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CHAPTER

ONE

ABOUT THIS BOOK

Reporting Errors. If you find an error, please report it! Or if you have a suggestion about how to rewrite some part of
the book, let us know. Just go to the page of the book for which you’d like to make a suggestion, click on the GitHub icon
(it looks like a cat) near the top right of the page, and click “open issue” or “suggest edit”. The latter is a little heavier
weight, because it requires you to fork the textbook repository with GitHub. But for minor edits that will be appreciated
and lead to much quicker uptake of suggestions.
Background. This book is used at Cornell for a third-semester programming course. Most students have had one
semester of introductory programming in Python, followed by one semester of object-oriented programming in Java.
Frequent comparisons are therefore made to those two languages. Readers who have studied similar languages should
have no difficulty following along. The book does not assume any prior knowledge of functional programming, but it
does assume that readers have prior experience programming in some mainstream imperative language. Knowledge of
discrete mathematics at the level of a standard first-semester CS course is also assumed.
Videos. You will find over 200 YouTube videos embedded throughout this book. The videos usually provide an introduc-
tion to material, upon which the textbook then expands. These videos were produced during pandemic when the Cornell
course that uses this textbook, CS 3110, had to be asynchronous. The student response to them was overwhelmingly
positive, so they are now being made public as part of the textbook. But just so you know, they were not produced by a
professional A/V team—just a guy in his basement who was learning as he went.
The videos mostly use the versions of OCaml and its ecosystem that were current in Fall 2020. Current versions you
are using are likely to look different from the videos, but don’t be alarmed: the underlying ideas are the same. The most
visible difference is likely to be the VS Code plugin for OCaml. In Fall 2020 the badly-aging “OCaml and Reason IDE”
plugin was still being used. It has since been superseded by the “OCaml Platform” plugin.
The textbook and videos sometimes cover topics in different orders. The videos are placed in the textbook nearest to the
topic they cover. To watch the videos in their original order, start with this YouTube playlist.
Collaborative Annotations. At the right margin of each page, you will find an annotation feature provided by hypothes.is.
You can use this to highlight and make private notes as you study the text. You can form study groups to share your
annotations, or share them publicly. Check out these tips for how to annotate effectively.
Executable Code. Many pages of this book have OCaml code embedded in them. The output of that code is already
shown in the book. Here’s an example:

print_endline "Hello world!"

Hello world!

- : unit = ()

You can also edit and re-run the code yourself to experiment and check your understanding. Look for the icon near the
top right of the page that looks like a rocket ship. In the drop-down menu you’ll find two ways to interact with the code:
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• Binderwill launch the sitemybinder.org, which is a free cloud-based service for “reproducible, interactive, shareable
environments for science at scale.” All the computation happens in their cloud servers, but the UI is provided
through your browser. It will take a little while for the textbook page to open in Binder. Once it does, you can
edit and run the code in a Jupyter notebook. Jupyter notebooks are documents (usually ending in the .ipynb
extension) that can be viewed in web browsers and used to write narrative content as well as code. They became
popular in data science communities (especially Python, R, and Julia) as a way of sharing analyses. Now many
languages can run in Jupyter notebooks, including OCaml. Code and text are written in cells in a Jupyter notebook.
Look at the “Cell” menu in it for commands to run cells. Note that Shift-Enter is usually a hotkey for running the
cell that has focus.

• Live Code will actually do about the same thing, except that instead of leaving the current textbook page and taking
you off to Binder, it will modify the code cells on the page to be editable. It takes some time for the connection to
be made behind the scenes, during which you will see “Waiting for kernel”. After the connection has been made,
you can edit all the code cells on the page and re-run them. If the connection fails, then first launch the Binder
site; this can take a long time. After it succeeds and loads the textbook page as a Jupyter notebook, you can close
Binder, reload the textbook page, and launch Live Code again. It should now be successful at connecting relatively
quickly.

Try interacting with the cell above now to make it print a string of your choice. How about: "Camels are bae."

Tip: When you write “real” OCaml code, this is not the interface you’ll be using. You’ll write code in an editor such
as Visual Studio Code or Emacs, and you’ll compile it from a terminal. Binder and Live Code are just for interacting
seamlessly with the textbook.

Downloadable Pages. Each page of this book is downloadable in a variety of formats. The download icon is at the top
right of each page. You’ll always find the original source code of the page, which is usually Markdown—or more precisely
MyST Markdown, which is an extension of Markdown for technical writing. Each page is also individually available as
PDF, which simply prints from your browser. For the entire book as a PDF, see the paragraph about that below.
Pages with OCaml code cells embedded in them can also be downloaded as Jupyter notebooks. To run those locally on
your own machine (instead of in the cloud on Binder), you’ll need to install Jupyter. The easiest way of doing that is
typically to install Anaconda. Then you’ll need to install OCaml Jupyter, which requires that you already have OCaml
installed. To be clear, there’s no need to install Jupyter or to use notebooks. It’s just another way to interact with this
textbook beyond reading it.
Exercises and Solutions. At the end of each chapter except the first, you will find a section of exercises. The exercises
are annotated with a difficulty rating:

• One star [★]: easy exercises that should take only a minute or two.
• Two stars [★★]: straightforward exercises that should take a few minutes.
• Three stars [★★★]: exercises that might require anywhere from five to twenty minutes or so.
• Four [★★★★] or more stars: challenging or time-consuming exercises provided for students who want to dig
deeper into the material.

It’s possible we’ve misjudged the difficulty of a problem from time to time. Let us know if you think an annotation is off.
Please do not post your solutions to the exercises anywhere, especially not in public repositories where they could be
found by search engines. Solutions to most exercises are available. We are happy to add or correct solutions. Please make
contributions through GitHub.
PDF.A full PDF version of this book is available. It does not contain the embedded videos, annotations, or other features
that the HTML version has. It might also have typesetting errors. At this time, no tablet (ePub, etc.) version is available,
but most tablets will let you import PDFs.
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CHAPTER

TWO

INSTALLING OCAML

If all you need is a way to follow along with the code examples in this book, you don’t actually have to install OCaml!
The code on each page is executable in your browser, as described earlier in this Preface.
If you want to take it a step further but aren’t ready to spend time installing OCaml yourself, we provide a virtual machine
with OCaml pre-installed inside a Linux OS.
But if you want to do OCaml development on your own, you’ll need to install it on your machine. There’s no universally
“right” way to do that. The instructions below are for Cornell’s CS 3110 course, which has goals and needs beyond just
OCaml. Nonetheless, you might find them to be useful even if you’re not a student in the course.
Here’s what we’re going to install:

• A Unix development environment
• OPAM, the OCaml Package Manager
• An OPAM switch with the OCaml compiler and some packages
• The Visual Studio Code editor, with OCaml support

The installation process will rely heavily on the terminal, or text interface to your computer. If you’re not too familiar
with it, you might want to brush up with a terminal tutorial.

Tip: If this is your first time installing development software, it’s worth pointing out that “close doesn’t count”: trying
to proceed past an error usually just leads to worse errors, and sadness. That’s because we’re installing a kind of tower
of software, with each level of the tower building on the previous. If you’re not building on a solid foundation, the whole
thing might collapse. The good news is that if you do get an error, you’re probably not alone. A quick google search
will often turn up solutions that others have discovered. Of course, do think critically about suggestions made by random
strangers on the internet.

Let’s get started!

2.1 Unix Development Environment

Important: First, upgrade yourOS. If you’ve been intending tomake anymajor OS upgrades, do them now. Otherwise
when you do get around to upgrading, you might have to repeat some or all of this installation process. Better to get it out
of the way beforehand.
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2.1.1 Linux

If you’re already running Linux, you’re done with this step. Proceed to Install OPAM, below.

2.1.2 Mac

Beneath the surface, macOS is already a Unix-based OS. But you’re going to need some developer tools and a Unix
package manager. There are two to pick from: Homebrew and MacPorts. From the perspective of this textbook and CS
3110, it doesn’t matter which you choose:

• If you’re already accustomed to one, feel free to keep using it. Make sure to run its update command before
continuing with these instructions.

• Otherwise, pick one and follow the installation instructions on its website. The installation process for Homebrew is
typically easier and faster, which might nudge you in that direction. If you do choose MacPorts, make sure to follow
all the detailed instructions on its page, including XCode and an X11 server. Do not install both Homebrew and
MacPorts; they aren’t meant to co-exist. If you change your mind later, make sure to uninstall one before installing
the other.

After you’ve finished installing/updating either Homebrew or MacPorts, proceed to Install OPAM, below.

2.1.3 Windows

Unix development inWindows is made possible by theWindows Subsystem for Linux (WSL). If you have a recent version
of Windows (build 20262, released November 2020, or newer), WSL is easy to install. If you don’t have that recent of a
version, try running Windows Update to get it.

Tip: If you get an error about the “virtual machine” while installing WSL, you might need to enable virtualization in
your machine’s BIOS. The instructions for that are dependent on the manufacturer of your machine. Try googling “enable
virtualization [manufacturer] [model]”, substituting for the manufacturer and model of your machine. This Red Hat Linux
page might also help.

With a recent version of Windows, and assuming you’ve never installed WSL before, here’s all you have to do:
• Open Windows PowerShell as Administrator. To do that, click Start, type PowerShell, and it should come up as
the best match. Click “Run as Administrator”, and click Yes to allow changes.

• Run wsl --install. (Or, if you have already installed WSL but not Ubuntu before, then instead run wsl
--install -d Ubuntu.) When the Ubuntu download is completed, it will likely ask you to reboot. Do so.
The installation will automatically resume after the reboot.

• You will be prompted to create a Unix username and password. You can use any username and password you wish.
It has no bearing on your Windows username and password (though you are free to re-use those). Do not put a
space in your username. Do not forget your password. You will need it in the future.

Warning: Do not proceed with these instructions if you were not prompted to create a Unix username and password.
Something has gone wrong. Perhaps your Ubuntu installation did not complete correctly. Try uninstalling Ubuntu
and reinstalling it through the Windows Start menu.

Now skip to the “Ubuntu setup” paragraph below.
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Without a recent version of Windows, you will need to follow Microsoft’s manual installation instructions. WSL2 is
preferred over WSL1 by OCaml (and WSL2 offers performance and functionality improvements), so install WSL2 if you
can.
Ubuntu setup. These rest of these instructions assume that you installed Ubuntu (22.04) as the Linux distribution. That
is the default distribution in WSL. In principle other distributions should work, but might require different commands
from this point forward.
Open the Ubuntu app. (It might already be open if you just finished installing WSL.) You will be at the Bash prompt,
which looks something like this:

user@machine:~$

Warning: If that prompt instead looks like root@...#, something is wrong. Did you create a Unix username and
password for Ubuntu in the earlier step above? If so, the username in this prompt should be the username you chose
back then, not root. Do not proceed with these instructions if your prompt looks like root@...#. Perhaps you
could uninstall Ubuntu and reinstall it.

In the current version of the Windows terminal, Ctrl+Shift+C will copy and Ctrl+Shift+V will paste into the terminal.
Note that you have to include Shift as part of that keystroke. In older versions of the terminal, you might need to find an
option in the terminal settings to enable those keyboard shortcuts.
Run the following command to update the APT package manager, which is what helps to install Unix packages:

sudo apt update

You will be prompted for the Unix password you chose. The prefix sudomeans to run the command as the administrator,
aka “super user”. In other words, do this command as super user, hence, “sudo”.

Warning: Running commands with sudo is potentially dangerous and should not be done lightly. Do not get into
the habit of putting sudo in front of commands, and do not randomly try it without reason.

Now run this command to upgrade all the APT software packages:

sudo apt upgrade -y

Then install some useful packages that we will need:

sudo apt install -y zip unzip build-essential

File Systems. WSL has its own filesystem that is distinct from the Windows file system, though there are ways to access
each from the other.

• When you launch Ubuntu and get the $ prompt, you are in the WSL file system. Your home directory there is
named ~, which is a built-in alias for /home/your_ubuntu_user_name. You can run explorer.exe .
(note the dot at the end of that) to open your Ubuntu home directory in Windows explorer.

• From Ubuntu, you can access your Windows home directory at the path /mnt/c/Users/
your_windows_user_name/.

• From Windows Explorer, you can access your Ubuntu home directory under the Linux icon in the left-hand
list (near “This PC” and “Network”), then navigating to Ubuntu → home → your_ubuntu_user_name.
Or you can go there directly by typing into the Windows Explorer path bar: \\wsl$\Ubuntu\home\
your_ubuntu_user_name.

2.1. Unix Development Environment 9
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Practice accessing your Ubuntu and Windows home directories now, and make sure you can recognize which you are in.
For advanced information, see Microsoft’s guide to Windows and Linux file systems.
We recommend storing your OCaml development work in your Ubuntu home directory, not your Windows home direc-
tory. By implication, Microsoft also recommends that in the guide just linked.

2.2 Install OPAM

Mac. If you’re using Homebrew, run this command:

brew install opam

If you’re using MacPorts, run this command:

sudo port install opam

Windows. Run this command from Ubuntu:

sudo apt install opam

Linux. Follow the instructions for your distribution.

2.3 Initialize OPAM

Warning: Do not put sudo in front of any opam commands. That would break your OCaml installation.

Linux, Mac, and WSL2. Run:

opam init --bare -a -y

Don’t worry if you get a note about making sure .profile is “well-sourced” in .bashrc. You don’t need to do
anything about that.
If you get a warning that OPAM is out of date, update it by running:

opam update

WSL1. Hopefully you are running WSL2, not WSL1. But on WSL1, run:

opam init --bare -a -y --disable-sandboxing

It is necessary to disable sandboxing because of an issue involving OPAM and WSL1.
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2.4 Create an OPAM Switch

A switch is a named installation of OCaml with a particular compiler version and set of packages. You can have many
switches and, well, switch between them—whence the name. Create a switch for this semester’s CS 3110 by running this
command:

opam switch create cs3110-2025sp ocaml-base-compiler.5.2.0

Tip: If that command fails saying that the 5.2.0 compiler can’t be found, you probably installed OPAM sometime back
in the past and now need to update it. Do so with opam update.

You might be prompted to run the next command. It won’t matter whether you do or not, because of the very next step
we’re going to do (i.e., logging out).

eval $(opam env)

Now we need to make sure your OCaml environment was configured correctly. Logout from your OS (or just reboot).
Then re-open your terminal and run this command:

opam switch list

You should get output like this:

# switch compiler
→ cs3110-2025sp ocaml-base-compiler.5.2.0,ocaml-options-vanilla.1

There might be other lines if you happen to have done OCaml development before. There will be another column named
“description” whose contents are not shown here. Double check the following:

• You must not get a warning that “The environment is not in sync with the current switch. You should run eval
$(opam env)”. If either of the two issues below also occur, you need to resolve this issue first.

• There must be a right arrow in the first column next to the current semester’s switch.
• That switch must have the right name and the right compiler version.

Warning: If you do get that warning about opam env, something is wrong. Your shell is probably not running the
OPAM configuration commands that opam init was meant to install. You could try opam init --reinit
to see whether that fixes it. Also, make sure you really did log out of your OS (or reboot).

Continue by installing the OPAM packages we need:

opam install -y utop odoc ounit2 qcheck bisect_ppx menhir ocaml-lsp-server ocamlformat

Make sure to grab that whole line above when you copy it. You will get some output about editor configuration. Unless
you intend to use Emacs or Vim for OCaml development, you can safely ignore that output. We’re going to use VS Code
as the editor in these instructions, so let’s ignore it.
You should now be able to launch utop, the OCaml Universal Toplevel.

utop

2.4. Create an OPAM Switch 11
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Tip: You should see a message “Welcome to utop version … (using OCaml version 5.2.0)!” If the OCaml version is
incorrect, then you probably have an environment issue. See the tip above about the opam env command.

Enter 3110 followed by two semicolons. Press return. The # is the utop prompt; you do not type it yourself.

# 3110;;
- : int = 3110

Stop to appreciate how lovely 3110 is. Then quit utop. Note that this time you must enter the extra # before the quit
directive.

# #quit;;

A faster way to quit is to type Control+D.

2.5 Double-Check OCaml

If you’re having any trouble with your installation, follow these double-check instructions. Some of them repeat the tips
we provided above, but we’ve put them all here in one place to help diagnose any issues.
First, reboot your computer. We need a clean slate for this double-check procedure.
Second, run utop, and make sure it works. If it does not, here are some common issues:

• Are you in the right Unix prompt? On Mac, make sure you are in whatever Unix shell is the default for your
Terminal: don’t run bash or zsh or anything else manually to change the shell. On Windows, make sure you are in
the Ubuntu app, not PowerShell or Cmd.

• Is the OPAM environment set? If utop isn’t a recognized command, run eval $(opam env) then try
running utop again. If utop nowworks, your login shell is somehow not running the right commands to automatically
activate theOPAMenvironment; you shouldn’t have tomanually activate the environment with theeval command.
Probably something went wrong earlier when you ran the opam init command. To fix it, follow the “redo”
instructions below.

• Is your switch listed? Run opam switch list and make sure a switch named cs3110-2025sp is listed,
that it has the 5.2.0 compiler, and that it is the active switch (which is indicated with an arrow beside it). If that
switch is present but not active, run opam switch cs3110-2025sp then see whether utop works. If that
switch is not present, follow the “redo” instructions below.

Redo Instructions: Remove the OPAM directory by running rm -r ~/.opam. Then go back to the OPAM initial-
ization step in the instructions way above, and proceed forward. Be extra careful to use the exact OPAM commands given
above; sometimes mistakes occur when parts of them are omitted. Finally, double-check again: reboot and see whether
utop still works.

Important: You want to get to the point where utop immediately works after a reboot, without having to type any
additional commands.
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2.6 Visual Studio Code

Visual Studio Code is a great choice as a code editor for OCaml. (Though if you are already a power user of Emacs or
Vim those are great, too.)
First, download and install Visual Studio Code (henceforth, VS Code) following Microsoft’s instructions for your OS:
Mac instructions, Windows instructions, Linux instructions.

Warning: OnMac you must followMicrosoft’s instructions to install VS Code in your Applications folder. Skipping
those instructions will result in issues that do not become apparent until later. Make sure you get it right now.

Launch VS Code. Open the extensions pane, either by going to View → Extensions, or by clicking on the icon for it in
the column of icons on the left — it looks like four little squares, the top-right of which is separated from the other three.
At various points in the following instructions you will be asked to “open the Command Palette.” To do that, go to View
→ Command Palette. There is also an operating system specific keyboard shortcut, which you will see to the right of the
words “Command Palette” in that View menu.
Second, follow one of these steps if you are on Windows or Mac:

• Windows only: Install the “WSL” extension.
• Mac only: Open the Command Palette and type “shell command” to find the “Shell Command: Install ‘code’
command in PATH” command. Run it.

Third, regardless of your OS, close any open terminals — or just logout or reboot — to let the new path settings take
effect, so that you will later be able to launch VS Code from the terminal.
Fourth, on Windows only, open the Command Palette and run the command “WSL: Connect to WSL”. (If you’re on
Mac, skip ahead to the next step.) The first time you do this, it will install some additional software. After that completes,
you will see a “WSL: Ubuntu” indicator in the bottom-left of the VS Code window. Make sure that you see “WSL:
Ubuntu” there before proceeding with the next step below. If you see just an icon that looks like >< then click it, and
choose “Connect to WSL” from the Command Palette that opens.
Fifth, again open the VS Code extensions pane. Search for and install the “OCaml Platform” extension from OCaml
Labs. Be careful to install the extension with exactly that name.

Warning: The extensions named simply “OCaml” or “OCaml and Reason IDE” are not the right ones. They are
both old and no longer maintained by their developers.

2.7 Double-Check VS Code

Let’s make sure VS Code’s OCaml support is working.
• Reboot your computer again. (Yeah, that really shouldn’t be necessary. But it will detect so many potential mistakes
now that it’s worth the effort.)

• Open a fresh new Unix shell. Windows: remember that’s the Ubuntu, not PowerShell or Cmd. Mac: remember
that you shouldn’t be manually switching to a different shell by typing zsh or bash.

• Navigate to a directory of your choice, preferably a subdirectory of your home directory. For example, you might
create a directory for your 3110 work inside your home directory:

2.6. Visual Studio Code 13
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mkdir ~/3110
cd ~/3110

In that directory open VS Code by running:

code .

Go to File → New File. Save the file with the name test.ml. VS Code should give it an orange camel icon.
• Type the following OCaml code then press Return/Enter:

let x : int = 3110

As you type, VS Code should colorize the syntax, suggest some completions, and add a little annotation above the
line of code. Try changing the int you typed to string. A squiggle should appear under 3110. Hover over
it to see the error message. Go to View → Problems to see it there, too. Add double quotes around the integer to
make it a string, and the problem will go away.

If you don’t observe those behaviors, something is wrong with your installation. Here’s how to proceed:
• Make sure that, from the same Unix prompt as which you launched VS Code, you can successfully complete the
double-check instructions for your OPAM switch: Can you run utop? Is the right switch active? If not, that’s the
problem you need to solve first. Then return to the VS Code issue. It might be fixed now.

• Make sure that you are on the most current version of VS Code. Run the VS Code palette command “Code: Check
for Updates”. If you cannot get VS Code to update and you are on Mac, make sure that you followed Microsoft’s
instructions to install VS Code in your Application folder.

• If you’re on WSL and VS Code does add syntax highlighting but does not add squiggles as described above, and/or
you get an error about “Sandbox initialization failed”, then double-check that you see a “WSL” indicator in the
bottom left of the VS Code window. If you do, make sure that the “OCaml Platform” extension is installed. If you
do not, make sure you installed the “WSL” extension as described above, and that you are launching VS Code from
Ubuntu rather than PowerShell or from the Windows GUI.

If you’re still stuck with an issue, try uninstalling VS Code, rebooting, and re-doing all the installation instructions
above from scratch. Pay close attention to any warnings or errors.

Warning: While troubleshooting any VS Code issues, do not hardcode any paths in the VS Code settings file,
despite any advice you might find online. That is a band-aid, not a cure of whatever the underlying problem really is.
More than likely, the real problem is an OCaml environment issue that you can investigate with the OCaml double-
check instructions above.

2.8 VS Code Settings

We recommend tweaking a few editor settings. Open the user settings JSON file by (i) going to View → Command
Palette, (ii) typing “user settings json”, and (iii) selecting Open User Settings (JSON). You will see a JSON file that might
already have some settings in it. If so, it will look like this:

{
(your pre-existing settings here)

}

Add these new settings into that outermost set of braces:
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{
"[ocaml][ocaml.interface]": {
"editor.tabSize": 2,
"editor.rulers": [ 80 ],
"editor.formatOnSave": true

},
(your pre-existing settings here)

}

Save the file and close the tab.

2.9 Using VS Code Collaboratively

VS Code’s Live Share extension makes it easy and fun to collaborate on code with other humans. You can edit code
together like collaborating inside a Google Doc. It even supports a shared voice channel, so there’s no need to spin up a
separate Zoom call. To install and use Live Share, follow Microsoft’s tutorial.
If you are a Cornell student, log in with your Microsoft account, not GitHub. Enter your Cornell NetID email, e.g.,
your_netid@cornell.edu. That will take you to Cornell’s login site. Use the password associated with your
NetID.
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CHAPTER

THREE

BETTER PROGRAMMING THROUGH OCAML

Do you already know how to program in a mainstream language like Python or Java? Good. This book is for you. It’s
time to learn how to program better. It’s time to learn a functional language, OCaml.
Functional programming provides a different perspective on programming than what you have experienced so far. Adapt-
ing to that perspective requires letting go of old ideas: assignment statements, loops, classes and objects, among others.
That won’t be easy.

Nan-in (2/72/7), a Japanese master during the Meiji era (1868-1912), received a university professor who came
to inquire about Zen. Nan-in served tea. He poured his visitor’s cup full, and then kept on pouring. The
professor watched the overflow until he no longer could restrain himself. “It is overfull. No more will go in!”
“Like this cup,” Nan-in said, “you are full of your own opinions and speculations. How can I show you Zen
unless you first empty your cup?”

I believe that learning OCaml will make you a better programmer. Here’s why:
• You will experience the freedom of immutability, in which the values of so-called “variables” cannot change. Good-
bye, debugging.

• Youwill improve at abstraction, which is the practice of avoiding repetition by factoring out commonality. Goodbye,
bloated code.

• You will be exposed to a type system that you will at first hate because it rejects programs you think are correct. But
you will come to love it, because you will humbly realize it was right and your programs were wrong. Goodbye,
failing tests.

• Youwill be exposed to some of the theory and implementation of programming languages, helping you to understand
the foundations of what you are saying to the computer when you write code. Goodbye, mysterious and magic
incantations.

All of those ideas can be learned in other contexts and languages. But OCaml provides an incredible opportunity to bundle
them all together. OCaml will change the way you think about programming.

“A language that doesn’t affect the way you think about programming is not worth knowing.”
---Alan J. Perlis (1922-1990), first recipient of the Turing Award

Moreover, OCaml is beautiful. OCaml is elegant, simple, and graceful. Aesthetics do matter. Code isn’t written just to
be executed by machines. It’s also written to communicate to humans. Elegant code is easier to read and maintain. It isn’t
necessarily easier to write.
The OCaml code you write can be stylish and tasteful. At first, this might not be apparent. You are learning a new
language after all—you wouldn’t expect to appreciate Sanskrit poetry on day 1 of Introductory Sanskrit. In fact, you’ll
likely feel frustrated for a while as you struggle to express yourself in a new language. So give it some time. After you’ve
mastered OCaml, you might be surprised at how ugly those other languages you already know end up feeling when you
return to them.
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3.1 The Past of OCaml

Genealogically, OCaml comes from the line of programming languages whose grandfather is Lisp and includes other
modern languages such as Clojure, F#, Haskell, and Racket.
OCaml originates from work done by Robin Milner and others at the Edinburgh Laboratory for Computer Science in
Scotland. They were working on theorem provers in the late 1970s and early 1980s. Traditionally, theorem provers were
implemented in languages such as Lisp. Milner kept running into the problem that the theorem provers would sometimes
put incorrect “proofs” (i.e., non-proofs) together and claim that they were valid. So he tried to develop a language that
only allowed you to construct valid proofs. ML, which stands for “Meta Language”, was the result of that work. The
type system of ML was carefully constructed so that you could only construct valid proofs in the language. A theorem
prover was then written as a program that constructed a proof. Eventually, this “Classic ML” evolved into a full-fledged
programming language.
In the early ’80s, there was a schism in the ML community with the French on one side and the British and US on another.
The French went on to develop CAML and later Objective CAML (OCaml) while the Brits and Americans developed
Standard ML. The two dialects are quite similar. Microsoft introduced its own variant of OCaml called F# in 2005.
Milner received the Turing Award in 1991 in large part for his work on ML. The ACM website for his award includes
this praise:

ML was way ahead of its time. It is built on clean and well-articulated mathematical ideas, teased apart so
that they can be studied independently and relatively easily remixed and reused. ML has influenced many
practical languages, including Java, Scala, and Microsoft’s F#. Indeed, no serious language designer should
ignore this example of good design.

3.2 The Present of OCaml

OCaml is a functional programming language. The key linguistic abstraction of functional languages is the mathematical
function. A function maps an input to an output; for the same input, it always produces the same output. That is,
mathematical functions are stateless: they do not maintain any extra information or state that persists between usages of
the function. Functions are first-class: you can use them as input to other functions, and produce functions as output.
Expressing everything in terms of functions enables a uniform and simple programming model that is easier to reason
about than the procedures and methods found in other families of languages.
Imperative programming languages such as C and Java involve mutable state that changes throughout execution. Com-
mands specify how to compute by destructively changing that state. Procedures (or methods) can have side effects that
update state in addition to producing a return value.
The fantasy of mutability is that it’s easy to reason about: the machine does this, then this, etc.
The reality of mutability is that whereas machines are good at complicated manipulation of state, humans are not good
at understanding it. The essence of why that’s true is that mutability breaks referential transparency: the ability to replace
an expression with its value without affecting the result of a computation. In math, if 𝑓(𝑥) = 𝑦, then you can substitute
𝑦 anywhere you see 𝑓(𝑥). In imperative languages, you cannot: 𝑓 might have side effects, so computing 𝑓(𝑥) at time 𝑡
might result in a different value than at time 𝑡′.
It’s tempting to believe that there’s a single state that the machine manipulates, and that the machine does one thing at a
time. Computer systems go to great lengths in attempting to provide that illusion. But it’s just that: an illusion. In reality,
there are many states, spread across threads, cores, processors, and networked computers. And the machine does many
things concurrently. Mutability makes reasoning about distributed state and concurrent execution immensely difficult.
Immutability, however, frees the programmer from these concerns. It provides powerful ways to build correct and con-
current programs. OCaml is primarily an immutable language, like most functional languages. It does support imperative
programming with mutable state, but we won’t use those features until many chapters into the book—in part because we
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simply won’t need them, and in part to get you to quit “cold turkey” from a dependence you might not have known that
you had. This freedom from mutability is one of the biggest changes in perspective that OCaml can give you.

3.2.1 The Features of OCaml

OCaml is a statically-typed and type-safe programming language. A statically-typed language detects type errors at com-
pile time; if a type error is detected, the language won’t allow execution of the program. A type-safe language limits
which kinds of operations can be performed on which kinds of data. In practice, this prevents a lot of silly errors (e.g.,
treating an integer as a function) and also prevents a lot of security problems: over half of the reported break-ins at the
Computer Emergency Response Team (CERT, a US government agency tasked with cybersecurity) were due to buffer
overflows, something that’s impossible in a type-safe language.
Some languages, like Python and Racket, are type-safe but dynamically typed. That is, type errors are caught only at run
time. Other languages, like C and C++, are statically typed but not type safe: they check for some type errors, but don’t
guarantee the absence of all type errors. That is, there’s no guarantee that a type error won’t occur at run time. And still
other languages, like Java, use a combination of static and dynamic typing to achieve type safety.
OCaml supports a number of advanced features, some of which you will have encountered before, and some of which
are likely to be new:

• Algebraic data types: You can build sophisticated data structures in OCaml easily, without fussing with pointers
and memory management. Pattern matching—a feature we’ll soon learn about that enables examining the shape of
a data structure—makes them even more convenient.

• Type inference: You do not have to write type information down everywhere. The compiler automatically figures
out most types. This can make the code easier to read and maintain.

• Parametric polymorphism: Functions and data structures can be parameterized over types. This is crucial for
being able to re-use code.

• Garbage collection: Automatic memory management relieves you from the burden of memory allocation and
deallocation, a common source of bugs in languages such as C.

• Modules: OCaml makes it easy to structure large systems through the use of modules. Modules are used to
encapsulate implementations behind interfaces. OCaml goes well beyond the functionality of most languages with
modules by providing functions (called functors) that manipulate modules.

3.2.2 OCaml in Industry

OCaml and other functional languages are nowhere near as popular as Python, C, or Java. OCaml’s real strength lies in
language manipulation (i.e., compilers, analyzers, verifiers, provers, etc.). This is not surprising, because OCaml evolved
from the domain of theorem proving.
That’s not to say that functional languages aren’t used in industry. There are many industry projects using OCaml and
Haskell, among other languages. Yaron Minsky (Cornell PhD ‘02) even wrote a paper about using OCaml in the financial
industry. It explains how the features of OCaml make it a good choice for quickly building complex software that works.
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3.3 Look to Your Future

General-purpose languages come and go. In your life you’ll likely learn a handful. Today, it’s Python and Java. Yesterday,
it was Pascal and Cobol. Before that, it was Fortran and Lisp. Who knows what it will be tomorrow? In this fast-
changing field you need to be able to rapidly adapt. A good programmer has to learn the principles behind programming
that transcend the specifics of any specific language. There’s no better way to get at these principles than to approach
programming from a functional perspective. Learning a new language from scratch affords the opportunity to reflect along
the way about the difference between programming and programming in a language.

If after OCaml you want to learn more about functional programming, you’ll be well prepared. OCaml does a great job
of clarifying and simplifying the essence of functional programming in a way that other languages that blend functional
and imperative programming (like Scala) or take functional programming to the extreme (like Haskell) do not.
And even if you never code in OCaml again after learning it, you’ll still be better prepared for the future. Advanced
features of functional languages have a surprising tendency to predict new features of more mainstream languages. Java
brought garbage collection into the mainstream in 1995; Lisp had it in 1958. Java didn’t have generics until version 5 in
2004; the ML family had it in 1990. First-class functions, type inference, and pattern matching have been incorporated
into mainstream languages like Python, Java, and C++, long after functional languages introduced them.

3.4 A Brief History of CS 3110

This book is the primary textbook for CS 3110 at Cornell University. The course has existed for over two decades and
has always taught functional programming, but it has not always used OCaml.
Once upon a time, there was a course at MIT known as 6.001 Structure and Interpretation of Computer Programs (SICP).
It had a textbook by the same name, and it used Scheme, a functional programming language. Tim Teitelbaum taught a
version of the course at Cornell in Fall 1988, following the book rather closely and using Scheme.
CS 212. Dan Huttenlocher had been a TA for 6.001 at MIT; he later became faculty at Cornell. In Fall 1989, he
inaugurated CS 212 Modes of Algorithm Expression. Basing the course on SICP, he infused a more rigorous approach
to the material. Huttenlocher continued to develop CS 212 through the mid 1990s, using various homegrown dialects of
Scheme.
Other faculty began teaching the course regularly. Ramin Zabih had taken 6.001 as a first-year student at MIT. In Spring
1994, having become faculty at Cornell, he taught CS 212. Dexter Kozen (Cornell PhD 1977) first taught the course
in Spring 1996. The earliest surviving online record of the course seems to be Spring 1998, which was taught by Greg
Morrisett in Dylan; the name of the course had become Structure and Interpretation of Computer Programs.
By Fall 1999, CS 212 had its own lecture notes. As CS 3110 still does, that instance of CS 212 covered functional
programming, the substitution and environment models, some data structures and algorithms, and programming language
implementation.
CS 312. At that time, the CS curriculum had two introductory programming courses, CS 211 Computers and Program-
ming, and CS 212. Students took one or the other, similar to how students today take either CS 2110 or CS 2112. Then
they took CS 410 Data Structures. The earliest surviving online record of CS 410 seems to be from Spring 1998. It
covered many data structures and algorithms not covered by CS 212, including balanced trees and graphs, and it used
Java as the programming language.
Depending on which course they took, CS 211 or 212, students were entering upper-level courses with different skill sets.
After extensive discussions, the faculty chose to make CS 211 required, to rename CS 212 into CS 312 Data Structures
and Functional Programming, and to make CS 211 a prerequisite for CS 312. At the same time, CS 410 was eliminated
from the curriculum and its contents parceled out to CS 312 and CS 482 Introduction to Analysis of Algorithms. Dexter
Kozen taught the final offering of CS 410 in Fall 1999.
Greg Morrisett inaugurated the new CS 312 in Spring 2001. He switched from Scheme to Standard ML. Kozen first
taught it in Fall 2001, and Andrew Myers in Fall 2002. Myers began to incorporate material on modular programming
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from another MIT textbook, Program Development in Java: Abstraction, Specification, and Object-Oriented Design by
Barbara Liskov and John Guttag. Huttenlocher first taught the course in Spring 2006.
CS 3110. In Fall 2008 two big changes came: the language switched to OCaml, and the university switched to four-digit
course numbers. CS 312 became CS 3110. Myers, Huttenlocher, Kozen, and Zabih first taught the revised course in Fall
2008, Spring 2009, Fall 2009, and Fall 2010, respectively. Nate Foster first taught the course in Spring 2012; and Bob
Constable and Michael George co-taught for the first time in Fall 2013.
Michael Clarkson (Cornell PhD 2010) first taught the course in Fall 2014, after having first TA’d the course as a PhD
student back in Spring 2008. He began to revise the presentation of the OCaml programmingmaterial to incorporate ideas
by Dan Grossman (Cornell PhD 2003) about a principled approach to learning a programming language by decomposing
it into syntax, dynamic, and static semantics. Grossman uses that approach in CSE 341 Programming Languages at the
University of Washington and in his popular Programming Languages MOOC.
In Fall 2018 the compilation of this textbook began. It synthesizes the work of over two decades of functional program-
ming instruction at Cornell. In the words of the Cornell Evening Song,

‘Tis an echo from the walls Of our own, our fair Cornell.

3.5 Summary

This book is about becoming a better programmer. Studying functional programming will help with that. The biggest
obstacle in our way is the frustration of speaking a new language, particularly letting go of mutable state. But the benefits
will be great: a discovery that programming transcends programming in any particular language or family of languages,
an exposure to advanced language features, and an appreciation of beauty.

3.5.1 Terms and Concepts

• dynamic typing
• first-class functions
• functional programming languages
• immutability
• Lisp
• ML
• OCaml
• referential transparency
• side effects
• state
• static typing
• type safety
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3.5.2 Further Reading

• Introduction to Objective Caml, chapters 1 and 2, a freely available textbook that is recommended for this course
• OCaml from the Very Beginning, chapter 1, a textbook that is very gentle and recommended for this course. The
PDF and HTML formats of the book are free of charge.

• A guided tour [of OCaml]: chapter 1 of Real World OCaml, a book written by some Cornellians that some students
might enjoy reading

• The history of Standard ML: though it focuses on the SML variant of the ML language, it’s relevant to OCaml
• The value of values: a lecture by the designer of Clojure (a modern dialect of Lisp) on how the time of imperative
programming has passed

• Teach yourself programming in 10 years: an essay by a Director of Research at Google that puts the time required
to become an educated programmer into perspective
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CHAPTER

FOUR

THE BASICS OF OCAML

This chapter will cover some of the basic features of OCaml. But before we dive in to learning OCaml, let’s first talk
about a bigger idea: learning languages in general.
One of the secondary goals of this course is not just for you to learn a new programming language, but to improve your
skills at learning how to learn new languages.
There are five essential components to learning a language: syntax, semantics, idioms, libraries, and tools.
Syntax. By syntax, we mean the rules that define what constitutes a textually well-formed program in the language,
including the keywords, restrictions on whitespace and formatting, punctuation, operators, etc. One of the more annoying
aspects of learning a new language can be that the syntax feels odd compared to languages you already know. But the
more languages you learn, the more you’ll become used to accepting the syntax of the language for what it is, rather than
wishing it were different. (If you want to see some languages with really unusual syntax, take a look at APL, which needs
its own extended keyboard, and Whitespace, in which programs consist entirely of spaces, tabs, and newlines.) You need
to understand syntax just to be able to speak to the computer at all.
Semantics. By semantics, we mean the rules that define the behavior of programs. In other words, semantics is about
the meaning of a program—what computation a particular piece of syntax represents. Note that although “semantics” is
plural in form, we use it as singular. That’s similar to “mathematics” or “physics”.
There are two pieces to semantics, the dynamic semantics of a language and the static semantics of a language. The
dynamic semantics define the run-time behavior of a program as it is executed or evaluated. The static semantics define
the compile-time checking that is done to ensure that a program is legal, beyond any syntactic requirements. The most
important kind of static semantics is probably type checking: the rules that define whether a program is well-typed or not.
Learning the semantics of a new language is usually the real challenge, even though the syntax might be the first hurdle
you have to overcome. You need to understand semantics to say what you mean to the computer, and you need to say
what you mean so that your program performs the right computation.
Idioms. By idioms, we mean the common approaches to using language features to express computations. Given that
you might express one computation in many ways inside a language, which one do you choose? Some will be more
natural than others. Programmers who are fluent in the language will prefer certain modes of expression over others. We
could think of this in terms of using the dominant paradigms in the language effectively, whether they are imperative,
functional, object-oriented, etc. You need to understand idioms to say what you mean not just to the computer, but to
other programmers. When you write code idiomatically, other programmers will understand your code better.
Libraries. Libraries are bundles of code that have already been written for you and can make you a more productive
programmer, since you won’t have to write the code yourself. (It’s been said that laziness is a virtue for a programmer.)
Part of learning a new language is discovering what libraries are available and how to make use of them. A language
usually provides a standard library that gives you access to a core set of functionality, much of which you would be unable
to code up in the language yourself, such as file I/O.
Tools. At the very least any language implementation provides either a compiler or interpreter as a tool for interacting with
the computer using the language. But there are other kinds of tools: debuggers; integrated development environments
(IDE); and analysis tools for things like performance, memory usage, and correctness. Learning to use tools that are
associated with a language can also make you a more productive programmer. Sometimes it’s easy to confuse the tool
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itself for the language; if you’ve only ever used Eclipse and Java together for example, it might not be apparent that Eclipse
is an IDE that works with many languages, and that Java can be used without Eclipse.
When it comes to learning OCaml in this book, our focus is primarily on semantics and idioms. We’ll have to learn syntax
along the way, of course, but it’s not the interesting part of our studies. We’ll get some exposure to the OCaml standard
library and a couple other libraries, notably OUnit (a unit testing framework similar to JUnit, HUnit, etc.). Besides the
OCaml compiler and build system, the main tool we’ll use is the toplevel, which provides the ability to interactively
experiment with code.

4.1 The OCaml Toplevel

The toplevel is like a calculator or command-line interface to OCaml. It’s similar to JShell for Java, or the interactive
Python interpreter. The toplevel is handy for trying out small pieces of code without going to the trouble of launching
the OCaml compiler. But don’t get too reliant on it, because creating, compiling, and testing large programs will require
more powerful tools. Some other languages would call the toplevel a REPL, which stands for read-eval-print-loop: it reads
programmer input, evaluates it, prints the result, and then repeats.
In a terminal window, type utop to start the toplevel. Press Control-D to exit the toplevel. You can also enter #quit;;
and press return. Note that you must type the # there: it is in addition to the # prompt you already see.

4.1.1 Types and values

You can enter expressions into the OCaml toplevel. End an expression with a double semicolon ;; and press the return
key. OCaml will then evaluate the expression, tell you the resulting value, and the value’s type. For example:

# 42;;
- : int = 42

Let’s dissect that response from utop, reading right to left:
• 42 is the value.
• int is the type of the value.
• The value was not given a name, hence the symbol -.

That utop interaction was “hardcoded” as part of this book. We had to type in all the characters: the #, the -, etc. But the
infrastructure used to write this book actually enables us to write code that is evaluated by OCaml at the time the book is
translated into HTML or PDF. From now on, that’s usually what we will do. It looks like this:

42

- : int = 42

The first code block with the 42 in it is the code we asked OCaml to run. If you want to enter that into utop, you can copy
and paste it. There’s an icon in the top right of the block to do that easily. Just remember to add the double semicolon at
the end. The second code block, which is indented a little, is the output from OCaml as the book was being translated.

Tip: If you’re viewing this in a web browser, look to the top right for a download icon. Choose the .md option, and
you’ll see the original MyST Markdown source code for this page of the book. You’ll see that the output from the second
example above is not actually present in the source code. That’s good! It means that the output stays consistent with
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whatever current version of the OCaml compiler we use to build the book. It also means that any compilation errors can
be detected as part of building the book, instead of lurking for you, dear reader, to find them.

You can bind values to names with a let definition, as follows:

let x = 42

val x : int = 42

Again, let’s dissect that response, this time reading left to right:
• A value was bound to a name, hence the val keyword.
• x is the name to which the value was bound.
• int is the type of the value.
• 42 is the value.

You can pronounce the entire output as “x has type int and equals 42.”

4.1.2 Functions

A function can be defined at the toplevel using syntax like this:

let increment x = x + 1

val increment : int -> int = <fun>

Let’s dissect that response:
• increment is the identifier to which the value was bound.
• int -> int is the type of the value. This is the type of functions that take an int as input and produce an int
as output. Think of the arrow -> as a kind of visual metaphor for the transformation of one value into another
value—which is what functions do.

• The value is a function, which the toplevel chooses not to print (because it has now been compiled and has a
representation in memory that isn’t easily amenable to pretty printing). Instead, the toplevel prints <fun>, which
is just a placeholder.

Note: <fun> itself is not a value. It just indicates an unprintable function value.

You can “call” functions with syntax like this:

increment 0

- : int = 1

increment(21)

- : int = 22
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increment (increment 5)

- : int = 7

But in OCaml the usual vocabulary is that we “apply” the function rather than “call” it.
Note how OCaml is flexible about whether you write the parentheses or not, and whether you write whitespace or not.
One of the challenges of first learning OCaml can be figuring out when parentheses are actually required. So if you find
yourself having problems with syntax errors, one strategy is to try adding some parentheses. The preferred style, though,
is usually to omit parentheses when they are not needed. So, increment 21 is better than increment(21).

4.1.3 Loading code in the toplevel

In addition to allowing you to define functions, the toplevel will also accept directives that are not OCaml code but rather
tell the toplevel itself to do something. All directives begin with the # character. Perhaps the most common directive
is #use, which loads all the code from a file into the toplevel, just as if you had typed the code from that file into the
toplevel.
For example, suppose you create a file named mycode.ml. In that file put the following code:

let inc x = x + 1

Start the toplevel. Try entering the following expression, and observe the error:

inc 3

File "[7]", line 1, characters 0-3:
1 | inc 3

^^^
Error: Unbound value inc
Hint: Did you mean incr?

The error occurs because the toplevel does not yet know anything about a function named inc. Now issue the following
directive to the toplevel:

# #use "mycode.ml";;

Note that the first # character above indicates the toplevel prompt to you. The second # character is one that you type
to tell the toplevel that you are issuing a directive. Without that character, the toplevel would think that you are trying to
apply a function named use.
Now try again:

inc 3

- : int = 4
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4.1.4 Workflow in the toplevel

The best workflow when using the toplevel with code stored in files is:
• Edit the code in the file.
• Load the code in the toplevel with #use.
• Interactively test the code.
• Exit the toplevel. Warning: do not skip this step.

Tip: Suppose you wanted to fix a bug in your code. It’s tempting to not exit the toplevel, edit the file, and re-issue
the #use directive into the same toplevel session. Resist that temptation. The “stale code” that was loaded from an
earlier #use directive in the same session can cause surprising things to happen—surprising when you’re first learning
the language, anyway. So always exit the toplevel before re-using a file.

4.2 Compiling OCaml Programs

Using OCaml as a kind of interactive calculator can be fun, but we won’t get very far with writing large programs that
way. We instead need to store code in files and compile them.

4.2.1 Storing code in files

Open a terminal, create a new directory, and open VS Code in that directory. For example, you could use the following
commands:

$ mkdir hello-world
$ cd hello-world

Warning: Do not use the root of your Unix home directory as the place you store the file. The build system we
are going to use very soon, dune, might not work right in the root of your home directory. Instead, you need to use a
subdirectory of your home directory.

Use VS Code to create a new file named hello.ml. Enter the following code into the file:

let _ = print_endline "Hello world!"

Note: There is no double semicolon ;; at the end of that line of code. The double semicolon is intended for interactive
sessions in the toplevel, so that the toplevel knows you are done entering a piece of code. There’s usually no reason to
write it in a .ml file.

The let _ = above means that we don’t care to give a name (hence the “blank” or underscore) to code on the right-hand
side of the =.
Save the file and return to the command line. Compile the code:

$ ocamlc -o hello.byte hello.ml
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The compiler is named ocamlc. The -o hello.byte option says to name the output executable hello.byte.
The executable contains compiled OCaml bytecode. In addition, two other files are produced, hello.cmi and hello.
cmo. We don’t need to be concerned with those files for now. Run the executable:

$ ./hello.byte

It should print Hello world! and terminate.
Now change the string that is printed to something of your choice. Save the file, recompile, and rerun. Try making the
code print multiple lines.
This edit-compile-run cycle between the editor and the command line is something that might feel unfamiliar if you’re
used to working inside IDEs like Eclipse. Don’t worry; it will soon become second nature.
Now let’s clean up all those generated files:

$ rm hello.byte hello.cmi hello.cmo

4.2.2 What about Main?

Unlike C or Java, OCaml programs do not need to have a special function named main that is invoked to start the
program. The usual idiom is just to have the very last definition in a file serve as the main function that kicks off whatever
computation is to be done.

4.2.3 Dune

In larger projects, we don’t want to run the compiler or clean up manually. Instead, we want to use a build system to
automatically find and link in libraries. OCaml has a legacy build system called ocamlbuild, and a newer build system
called Dune. Similar systems include make, which has long been used in the Unix world for C and other languages; and
Gradle, Maven, and Ant, which are used with Java.
A Dune project is a directory (and its subdirectories) that contain OCaml code you want to compile. The root of a project
is the highest directory in its hierarchy. A project might rely on external packages providing additional code that is already
compiled. Usually, packages are installed with OPAM, the OCaml Package Manager.
Each directory in your project can contain a file named dune. That file describes to Dune how you want the code in
that directory (and subdirectories) to be compiled. Dune files use a functional-programming syntax descended from LISP
called s-expressions, in which parentheses are used to show nested data that form a tree, much like HTML tags do. The
syntax of Dune files is documented in the Dune manual.

Creating a Dune Project Manually

Here is a small example of how to use Dune. In the same directory as hello.ml, create a file named dune and put the
following in it:

(executable
(name hello))

That declares an executable (a program that can be executed) whose main file is hello.ml.
Also create a file named dune-project and put the following in it:

(lang dune 3.4)
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That tells Dune that this project uses Dune version 3.4, which was current at the time this version of the textbook was
released. This project file is needed in the root directory of every source tree that you want to compile with Dune. In
general, you’ll have a dune file in every subdirectory of the source tree but only one dune-project file at the root.
Then run this command from the terminal:

$ dune build hello.exe

Note that the .exe extension is used on all platforms by Dune, not just on Windows. That causes Dune to build a native
executable rather than a bytecode executable.
Dune will create a directory _build and compile our program inside it. That’s one benefit of the build system over
directly running the compiler: instead of polluting your source directory with a bunch of generated files, they get cleanly
created in a separate directory. Inside _build there are many files that get created by Dune. Our executable is buried a
couple of levels down:

$ _build/default/hello.exe
Hello world!

But Dune provides a shortcut to having to remember and type all of that. To build and execute the program in one step,
we can simply run:

$ dune exec ./hello.exe
Hello world!

Finally, to clean up all the compiled code we just run:

$ dune clean

That removes the _build directory, leaving just your source code.

Tip: When Dune compiles your program, it caches a copy of your source files in _build/default. If you ever
accidentally make a mistake that results in loss of a source file, you might be able to recover it from inside _build. Of
course, using source control like git is also advisable.

Warning: Do not edit any of the files in the _build directory. If you ever get an error about trying to save a file
that is read-only, you maybe are attempting to edit a file in the _build directory.

Creating a Dune Project Automatically

In the terminal, change to a directory where you want to store your work, for example, “~/work”. Pick a name for your
project, such as “calculator”. Run:

$ dune init project calculator
$ cd calculator
$ code .

You should now have VS Code open and see the files that Dune automatically generated for your project.
From the terminal in the calculator directory, run:
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$ dune exec bin/main.exe

It will print Hello, World!

Tip: If you use ocamlformat to automatically format your source code, note that Dune does not add a .ocamlformat
file to your project automatically. You might want to add one in the top-level directory, aka the root, of your project. That
is the directory that has the file named dune-project in it.

Running Dune Continuously

When you run dune build, it compiles your project once. You might want to have your code compiled automatically
every time you save a file in your project. To accomplish that, run this command:

$ dune build --watch

Dune will respond that it is waiting for filesystem changes. That means Dune is now running continuously and rebuilding
your project every time you save a file in VS Code. To stop Dune, press Control+C.

4.3 Expressions

The primary piece of OCaml syntax is the expression. Just like programs in imperative languages are primarily built out
of commands, programs in functional languages are primarily built out of expressions. Examples of expressions include
2+2 and increment 21.
The OCaml manual has a complete definition of all the expressions in the language. Though that page starts with a rather
cryptic overview, if you scroll down, you’ll come to some English explanations. Don’t worry about studying that page
now; just know that it’s available for reference.
The primary task of computation in a functional language is to evaluate an expression to a value. A value is an expression
for which there is no computation remaining to be performed. So, all values are expressions, but not all expressions are
values. Examples of values include 2, true, and "yay!".
The OCaml manual also has a definition of all the values, though again, that page is mostly useful for reference rather
than study.
Sometimes an expression might fail to evaluate to a value. There are two reasons that might happen:

1. Evaluation of the expression raises an exception.
2. Evaluation of the expression never terminates (e.g., it enters an “infinite loop”).

4.3.1 Primitive Types and Values

The primitive types are the built-in and most basic types: integers, floating-point numbers, characters, strings, and
booleans. They will be recognizable as similar to primitive types from other programming languages.
Type int: Integers. OCaml integers are written as usual: 1, 2, etc. The usual operators are available: +, -, *, /, and
mod. The latter two are integer division and modulus:

65 / 60
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- : int = 1

65 mod 60

- : int = 5

65 / 0

Exception: Division_by_zero.
Raised by primitive operation at unknown location
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

OCaml integers range from −262 to 262 − 1 on modern platforms. They are implemented with 64-bit machine words,
which is the size of a register on 64-bit processor. But one of those bits is “stolen” by the OCaml implementation, leading
to a 63-bit representation. That bit is used at run time to distinguish integers from pointers. For applications that need
true 64-bit integers, there is an Int64module in the standard library. And for applications that need arbitrary-precision
integers, there is a separate Zarith library. But for most purposes, the built-in int type suffices and offers the best
performance.
Type float: Floating-point numbers. OCaml floats are IEEE 754 double-precision floating-point numbers. Syntac-
tically, they must always contain a dot—for example, 3.14 or 3.0 or even 3.. The last is a float; if you write it as
3, it is instead an int:

3.

- : float = 3.

3

- : int = 3

OCaml deliberately does not support operator overloading, Arithmetic operations on floats are written with a dot after
them. For example, floating-point multiplication is written *. not *:

3.14 *. 2.

- : float = 6.28

3.14 * 2.

File "[7]", line 1, characters 0-4:
1 | 3.14 * 2.

^^^^
Error: This expression has type float but an expression was expected of type

int
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OCaml will not automatically convert between int and float. If you want to convert, there are two built-in functions
for that purpose: int_of_float and float_of_int.

3.14 *. (float_of_int 2)

- : float = 6.28

As in any language, the floating-point representation is approximate. That can lead to rounding errors:

0.1 +. 0.2

- : float = 0.300000000000000044

The same behavior can be observed in Python and Java, too. If you haven’t encountered this phenomenon before, here’s
a basic guide to floating-point representation that you might enjoy reading.
Type bool: Booleans. The boolean values are written true and false. The usual short-circuit conjunction && and
disjunction || operators are available.
Typechar: Characters. Characters are written with single quotes, such as'a', 'b', and'c'. They are represented as
bytes—that is, 8-bit integers— in the ISO 8859-1 “Latin-1” encoding. The first half of the characters in that range are the
standard ASCII characters. You can convert characters to and from integers with char_of_int and int_of_char.
Type string: Strings. Strings are sequences of characters. They are written with double quotes, such as "abc". The
string concatenation operator is ^:

"abc" ^ "def"

- : string = "abcdef"

Object-oriented languages often provide an overridable method for converting objects to strings, such as toString()
in Java or __str__() in Python. But most OCaml values are not objects, so another means is required to convert
to strings. For three of the primitive types, there are built-in functions: string_of_int, string_of_float,
string_of_bool. Strangely, there is no string_of_char, but the library function String.make can be used
to accomplish the same goal.

string_of_int 42

- : string = "42"

String.make 1 'z'

- : string = "z"

Likewise, for the same three primitive types, there are built-in functions to convert from a string if possible:
int_of_string, float_of_string, and bool_of_string.

int_of_string "123"

- : int = 123
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int_of_string "not an int"

Exception: Failure "int_of_string".
Raised by primitive operation at unknown location
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

There is no char_of_string, but the individual characters of a string can be accessed by a 0-based index. The
indexing operator is written with a dot and square brackets:

"abc".[0]

- : char = 'a'

"abc".[1]

- : char = 'b'

"abc".[3]

Exception: Invalid_argument "index out of bounds".
Raised by primitive operation at unknown location
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

4.3.2 More Operators

We’ve covered most of the built-in operators above, but there are a few more that you can see in the OCaml manual.
There are two equality operators in OCaml, = and ==, with corresponding inequality operators <> and !=. Operators
= and <> examine structural equality whereas == and != examine physical equality. Until we’ve studied the imperative
features of OCaml, the difference between them will be tricky to explain. See the documentation of Stdlib.(==) if
you’re curious now.

Important: Start training yourself now to use = and not to use ==. This will be difficult if you’re coming from a language
like Java where == is the usual equality operator.
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4.3.3 Assertions

The expression assert e evaluates e. If the result is true, nothing more happens, and the entire expression evaluates
to a special value called unit. The unit value is written () and its type is unit. But if the result is false, an exception
is raised.
One way to test a function f is to write a series of assertions like this:

let () = assert (f input1 = output1)
let () = assert (f input2 = output2)
let () = assert (f input3 = output3)

Those assert that f input1 should be output1, and so forth. The let () = ... part of those is used to handle
the unit value returned by each assertion.

4.3.4 If Expressions

The expression if e1 then e2 else e3 evaluates to e2 if e1 evaluates to true, and to e3 otherwise. We call
e1 the guard of the if expression.

if 3 + 5 > 2 then "yay!" else "boo!"

- : string = "yay!"

Unlike if-then-else statements that you may have used in imperative languages, if-then-else expressions in
OCaml are just like any other expression; they can be put anywhere an expression can go. That makes them similar to
the ternary operator ? : that you might have used in other languages.

4 + (if 'a' = 'b' then 1 else 2)

- : int = 6

If expressions can be nested in a pleasant way:

if e1 then e2
else if e3 then e4
else if e5 then e6
...
else en

You should regard the final else as mandatory, regardless of whether you are writing a single if expression or a highly
nested if expression. If you omit it you’ll likely get an error message that, for now, is inscrutable:

if 2 > 3 then 5

File "[20]", line 1, characters 14-15:
1 | if 2 > 3 then 5

^
Error: This expression has type int but an expression was expected of type

unit
because it is in the result of a conditional with no else branch

Syntax. The syntax of an if expression:
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if e1 then e2 else e3

The letter e is used here to represent any other OCaml expression; it’s an example of a syntactic variable akametavariable,
which is not actually a variable in the OCaml language itself, but instead a name for a certain syntactic construct. The
numbers after the letter e are being used to distinguish the three different occurrences of it.
Dynamic semantics. The dynamic semantics of an if expression:

• If e1 evaluates to true, and if e2 evaluates to a value v, then if e1 then e2 else e3 evaluates to v
• If e1 evaluates to false, and if e3 evaluates to a value v, then if e1 then e2 else e3 evaluates to v.

We call these evaluation rules: they define how to evaluate expressions. Note how it takes two rules to describe the
evaluation of an if expression, one for when the guard is true, and one for when the guard is false. The letter v is used
here to represent any OCaml value; it’s another example of a metavariable. Later we will develop a more mathematical
way of expressing dynamic semantics, but for now we’ll stick with this more informal style of explanation.
Static semantics. The static semantics of an if expression:

• If e1 has type bool and e2 has type t and e3 has type t then if e1 then e2 else e3 has type t
We call this a typing rule: it describes how to type check an expression. Note how it only takes one rule to describe the
type checking of an if expression. At compile time, when type checking is done, it makes no difference whether the
guard is true or false; in fact, there’s no way for the compiler to know what value the guard will have at run time. The
letter t here is used to represent any OCaml type; the OCaml manual also has definition of all types (which curiously
does not name the base types of the language like int and bool).
We’re going to be writing “has type” a lot, so let’s introduce a more compact notation for it. Whenever we would write
“e has type t”, let’s instead write e : t. The colon is pronounced “has type”. This usage of colon is consistent with
how the toplevel responds after it evaluates an expression that you enter:

let x = 42

val x : int = 42

In the above example, variable x has type int, which is what the colon indicates.

4.3.5 Let Expressions

In our use of the word let thus far, we’ve been making definitions in the toplevel and in .ml files. For example,

let x = 42;;

val x : int = 42

defines x to be 42, after which we can use x in future definitions at the toplevel. We’ll call this use of let a let definition.
There’s another use of let which is as an expression:

let x = 42 in x + 1

- : int = 43
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Here we’re binding a value to the name x then using that binding inside another expression, x+1. We’ll call this use of
let a let expression. Since it’s an expression, it evaluates to a value. That’s different than definitions, which themselves do
not evaluate to any value. You can see that if you try putting a let definition in place of where an expression is expected:

(let x = 42) + 1

File "[24]", line 1, characters 11-12:
1 | (let x = 42) + 1

^
Error: Syntax error

Syntactically, a let definition is not permitted on the left-hand side of the + operator, because a value is needed there,
and definitions do not evaluate to values. On the other hand, a let expression would work fine:

(let x = 42 in x) + 1

- : int = 43

Another way to understand let definitions at the toplevel is that they are like let expression where we just haven’t provided
the body expression yet. Implicitly, that body expression is whatever else we type in the future. For example,

# let a = "big";;
# let b = "red";;
# let c = a ^ b;;
# ...

is understood by OCaml in the same way as

let a = "big" in
let b = "red" in
let c = a ^ b in
...

That latter series of let bindings is idiomatically how several variables can be bound inside a given block of code.
Syntax.

let x = e1 in e2

As usual, x is an identifier. These identifiers must begin with lower-case, not upper, and idiomatically are written with
snake_case not camelCase. We call e1 the binding expression, because it’s what’s being bound to x; and we call
e2 the body expression, because that’s the body of code in which the binding will be in scope.
Dynamic semantics.
To evaluate let x = e1 in e2:

• Evaluate e1 to a value v1.
• Substitute v1 for x in e2, yielding a new expression e2'.
• Evaluate e2' to a value v2.
• The result of evaluating the let expression is v2.

Here’s an example:
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let x = 1 + 4 in x * 3
--> (evaluate e1 to a value v1)

let x = 5 in x * 3
--> (substitute v1 for x in e2, yielding e2')

5 * 3
--> (evaluate e2' to v2)

15
(result of evaluation is v2)

Static semantics.
• If e1 : t1 and if under the assumption that x : t1 it holds that e2 : t2, then (let x = e1 in e2)
: t2.

We use the parentheses above just for clarity. As usual, the compiler’s type inferencer determines what the type of the
variable is, or the programmer could explicitly annotate it with this syntax:

let x : t = e1 in e2

4.3.6 Scope

Let bindings are in effect only in the block of code in which they occur. This is exactly what you’re used to from nearly
any modern programming language. For example:

let x = 42 in
(* y is not meaningful here *)
x + (let y = "3110" in

(* y is meaningful here *)
int_of_string y)

The scope of a variable is where its name is meaningful. Variable y is in scope only inside of the let expression that
binds it above.
It’s possible to have overlapping bindings of the same name. For example:

let x = 5 in
((let x = 6 in x) + x)

But this is darn confusing, and for that reason, it is strongly discouraged style. Nonetheless, let’s consider what that code
means.
To what value does that code evaluate? The answer comes down to how x is replaced by a value each time it occurs. Here
are a few possibilities for such substitution:

(* possibility 1 *)
let x = 5 in

((let x = 6 in 6) + 5)

(* possibility 2 *)
let x = 5 in

((let x = 6 in 5) + 5)

(* possibility 3 *)
let x = 5 in

((let x = 6 in 6) + 6)
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The first one is what nearly any reasonable language would do. And most likely it’s what you would guess But, why?
The answer is something we’ll call the Principle of Name Irrelevance: the name of a variable shouldn’t intrinsically matter.
You’re used to this from math. For example, the following two functions are the same:

𝑓(𝑥) = 𝑥2

𝑓(𝑦) = 𝑦2

It doesn’t intrinsically matter whether we call the argument to the function 𝑥 or 𝑦; either way, it’s still the squaring function.
Therefore, in programs, these two functions should be identical:

let f x = x * x
let f y = y * y

This principle ismore commonly known as alpha equivalence: the two functions are equivalent up to renaming of variables,
which is also called alpha conversion for historical reasons that are unimportant here.
According to the Principle of Name Irrelevance, these two expressions should be identical:

let x = 6 in x
let y = 6 in y

Therefore, the following two expressions, which have the above expressions embedded in them, should also be identical:

let x = 5 in (let x = 6 in x) + x
let x = 5 in (let y = 6 in y) + x

But for those to be identical, we must choose the first of the three possibilities above. It is the only one that makes the
name of the variable be irrelevant.
There is a term commonly used for this phenomenon: a new binding of a variable shadows any old binding of the variable
name. Metaphorically, it’s as if the new binding temporarily casts a shadow over the old binding. But eventually the old
binding could reappear as the shadow recedes.
Shadowing is not mutable assignment. For example, both of the following expressions evaluate to 11:

let x = 5 in ((let x = 6 in x) + x)
let x = 5 in (x + (let x = 6 in x))

Likewise, the following utop transcript is not mutable assignment, though at first it could seem like it is:

# let x = 42;;
val x : int = 42
# let x = 22;;
val x : int = 22

Recall that every let definition in the toplevel is effectively a nested let expression. So the above is effectively the
following:

let x = 42 in
let x = 22 in
... (* whatever else is typed in the toplevel *)

The right way to think about this is that the second let binds an entirely new variable that just happens to have the same
name as the first let.
Here is another utop transcript that is well worth studying:
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# let x = 42;;
val x : int = 42
# let f y = x + y;;
val f : int -> int = <fun>
# f 0;;
: int = 42
# let x = 22;;
val x : int = 22
# f 0;;
- : int = 42 (* x did not mutate! *)

To summarize, each let definition binds an entirely new variable. If that new variable happens to have the same name as
an old variable, the new variable temporarily shadows the old one. But the old variable is still around, and its value is
immutable: it never, ever changes. So even though let expressions might superficially look like assignment statements
from imperative languages, they are actually quite different.

4.3.7 Type Annotations

OCaml automatically infers the type of every expression, with no need for the programmer to write it manually. Nonethe-
less, it can sometimes be useful to manually specify the desired type of an expression. A type annotation does that:

(5 : int)

- : int = 5

An incorrect annotation will produce a compile-time error:

(5 : float)

File "[27]", line 1, characters 1-2:
1 | (5 : float)

^
Error: This expression has type int but an expression was expected of type

float
Hint: Did you mean `5.'?

And that example shows why you might use manual type annotations during debugging. Perhaps you had forgotten that
5 cannot be treated as a float, and you tried to write:

5 +. 1.1

You might try manually specifying that 5 was supposed to be a float:

(5 : float) +. 1.1

File "[28]", line 1, characters 1-2:
1 | (5 : float) +. 1.1

^
Error: This expression has type int but an expression was expected of type

float
Hint: Did you mean `5.'?
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It’s clear that the type annotation has failed. Although that might seem silly for this tiny program, you might find this
technique to be effective as programs get larger.

Important: Type annotations are not type casts, such as might be found in C or Java. They do not indicate a conversion
from one type to another. Rather they indicate a check that the expression really does have the given type.

Syntax. The syntax of a type annotation:

(e : t)

Note that the parentheses are required.
Dynamic semantics. There is no run-time meaning for a type annotation. It goes away during compilation, because
it indicates a compile-time check. There is no run-time conversion. So, if (e : t) compiled successfully, then at
run-time it is simply e, and it evaluates as e would.
Static semantics. If e has type t then (e : t) has type t.

4.4 Functions

Since OCaml is a functional language, there’s a lot to cover about functions. Let’s get started.

Important: Methods and functions are not the same idea. A method is a component of an object, and it implicitly has
a receiver that is usually accessed with a keyword like this or self. OCaml functions are not methods: they are not
components of objects, and they do not have a receiver.
Some might say that all methods are functions, but not all functions are methods. Some might even quibble with that,
making a distinction between functions and procedures. The latter would be functions that do not return any meaningful
value, such as a void return type in Java or None return value in Python.
So if you’re coming from an object-oriented background, be careful about the terminology. Everything here is strictly
a function, not a method.

4.4.1 Function Definitions

The following code

let x = 42

has an expression in it (42) but is not itself an expression. Rather, it is a definition. Definitions bind values to names, in
this case the value 42 being bound to the name x. The OCaml manual describes definitions (see the third major grouping
titled “definition” on that page), but that manual page is again primarily for reference not for study. Definitions are not
expressions, nor are expressions definitions—they are distinct syntactic classes.
For now, let’s focus on one particular kind of definition, a function definition. Non-recursive functions are defined like
this:

let f x = ...

Recursive functions are defined like this:
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let rec f x = ...

The difference is just the rec keyword. It’s probably a bit surprising that you explicitly have to add a keyword to make a
function recursive, because most languages assume by default that they are. OCaml doesn’t make that assumption, though.
(Nor does the Scheme family of languages.)
One of the best known recursive functions is the factorial function. In OCaml, it can be written as follows:

(** [fact n] is [n!].
Requires: [n >= 0]. *)

let rec fact n = if n = 0 then 1 else n * fact (n - 1)

val fact : int -> int = <fun>

We provided a specification comment above the function to document the precondition (Requires) and postcondition
(is) of the function.
Note that, as in many languages, OCaml integers are not the “mathematical” integers but are limited to a fixed number
of bits. The manual specifies that (signed) integers are at least 31 bits, but they could be wider. As architectures have
grown, so has that size. In current implementations, OCaml integers are 63 bits. So if you test on large enough inputs,
you might begin to see strange results. The problem is machine arithmetic, not OCaml. (For interested readers: why 31
or 63 instead of 32 or 64? The OCaml garbage collector needs to distinguish between integers and pointers. The runtime
representation of these therefore steals one bit to flag whether a word is an integer or a pointer.)
Here’s another recursive function:

(** [pow x y] is [x] to the power of [y].
Requires: [y >= 0]. *)

let rec pow x y = if y = 0 then 1 else x * pow x (y - 1)

val pow : int -> int -> int = <fun>

Note howwe didn’t have to write any types in either of our functions: the OCaml compiler infers them for us automatically.
The compiler solves this type inference problem algorithmically, but we could do it ourselves, too. It’s like a mystery that
can be solved by our mental power of deduction:

• Since the if expression can return 1 in the then branch, we know by the typing rule for if that the entire if
expression has type int.

• Since the if expression has type int, the function’s return type must be int.
• Since y is compared to 0 with the equality operator, y must be an int.
• Since x is multiplied with another expression using the * operator, x must be an int.

If we wanted to write down the types for some reason, we could do that:

let rec pow (x : int) (y : int) : int = ...

The parentheses are mandatory when we write the type annotations for x and y. We will generally leave out these
annotations, because it’s simpler to let the compiler infer them. There are other times when you’ll want to explicitly
write down types. One particularly useful time is when you get a type error from the compiler that you don’t understand.
Explicitly annotating the types can help with debugging such an error message.
Syntax. The syntax for function definitions:
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let rec f x1 x2 ... xn = e

The f is a metavariable indicating an identifier being used as a function name. These identifiers must begin with a
lowercase letter. The remaining rules for lowercase identifiers can be found in the manual. The names x1 through xn
are metavariables indicating argument identifiers. These follow the same rules as function identifiers. The keyword rec
is required if f is to be a recursive function; otherwise it may be omitted.
Note that syntax for function definitions is actually simplified compared to what OCaml really allows. We will learn more
about some augmented syntax for function definition in the next couple of weeks. But for now, this simplified version will
help us focus.
Mutually recursive functions can be defined with the and keyword:

let rec f x1 ... xn = e1
and g y1 ... yn = e2

For example:

(** [even n] is whether [n] is even.
Requires: [n >= 0]. *)

let rec even n =
n = 0 || odd (n - 1)

(** [odd n] is whether [n] is odd.
Requires: [n >= 0]. *)

and odd n =
n <> 0 && even (n - 1);;

val even : int -> bool = <fun>
val odd : int -> bool = <fun>

The syntax for function types is:

t -> u
t1 -> t2 -> u
t1 -> ... -> tn -> u

The t and u are metavariables indicating types. Type t -> u is the type of a function that takes an input of type t and
returns an output of type u. We can think of t1 -> t2 -> u as the type of a function that takes two inputs, the first
of type t1 and the second of type t2, and returns an output of type u. Likewise for a function that takes n arguments.
Dynamic semantics. There is no dynamic semantics of function definitions. There is nothing to be evaluated. OCaml
just records that the name f is bound to a function with the given arguments x1..xn and the given body e. Only later,
when the function is applied, will there be some evaluation to do.
Static semantics. The static semantics of function definitions:

• For non-recursive functions: if by assuming that x1 : t1 and x2 : t2 and … and xn : tn, we can
conclude that e : u, then f : t1 -> t2 -> ... -> tn -> u.

• For recursive functions: if by assuming that x1 : t1 and x2 : t2 and … and xn : tn and f : t1 ->
t2 -> ... -> tn -> u, we can conclude that e : u, then f : t1 -> t2 -> ... -> tn -> u.

Note how the type checking rule for recursive functions assumes that the function identifier f has a particular type, then
checks to see whether the body of the function is well-typed under that assumption. This is because f is in scope inside
the function body itself (just like the arguments are in scope).
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4.4.2 Anonymous Functions

We already know that we can have values that are not bound to names. The integer 42, for example, can be entered at
the toplevel without giving it a name:

42

- : int = 42

Or we can bind it to a name:

let x = 42

val x : int = 42

Similarly, OCaml functions do not have to have names; they may be anonymous. For example, here is an anonymous
function that increments its input: fun x -> x + 1. Here, fun is a keyword indicating an anonymous function, x is
the argument, and -> separates the argument from the body.
We now have two ways we could write an increment function:

let inc x = x + 1
let inc = fun x -> x + 1

val inc : int -> int = <fun>

val inc : int -> int = <fun>

They are syntactically different but semantically equivalent. That is, even though they involve different keywords and put
some identifiers in different places, they mean the same thing.
Anonymous functions are also called lambda expressions, a term that comes from the lambda calculus, which is a math-
ematical model of computation in the same sense that Turing machines are a model of computation. In the lambda
calculus, fun x -> e would be written 𝜆𝑥.𝑒. The 𝜆 denotes an anonymous function.
It might seem a little mysterious right now why we would want functions that have no names. Don’t worry; we’ll see good
uses for them later in the course, especially when we study so-called “higher-order programming”. In particular, we will
often create anonymous functions and pass them as input to other functions.
Syntax.

fun x1 ... xn -> e

Static semantics.
• If by assuming that x1 : t1 and x2 : t2 and … and xn : tn, we can conclude that e : u, then fun
x1 ... xn -> e : t1 -> t2 -> ... -> tn -> u.

Dynamic semantics. An anonymous function is already a value. There is no computation to be performed.
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4.4.3 Function Application

Here we cover a somewhat simplified syntax of function application compared to what OCaml actually allows.
Syntax.

e0 e1 e2 ... en

The first expression e0 is the function, and it is applied to arguments e1 through en. Note that parentheses are not
required around the arguments to indicate function application, as they are in languages in the C family, including Java.
Static semantics.

• If e0 : t1 -> ... -> tn -> u and e1 : t1 and … and en : tn then e0 e1 ... en : u.
Dynamic semantics.
To evaluate e0 e1 ... en:

1. Evaluate e0 to a function. Also evaluate the argument expressions e1 through en to values v1 through vn.
For e0, the result might be an anonymous function fun x1 ... xn -> e or a name f. In the latter case, we
need to find the definition of f, which we can assume to be of the form let rec f x1 ... xn = e. Either
way, we now know the argument names x1 through xn and the body e.

2. Substitute each value vi for the corresponding argument name xi in the body e of the function. That substitution
results in a new expression e'.

3. Evaluate e' to a value v, which is the result of evaluating e0 e1 ... en.
If you compare these evaluation rules to the rules for let expressions, you will notice they both involve substitution. This
is not an accident. In fact, anywhere let x = e1 in e2 appears in a program, we could replace it with (fun x
-> e2) e1. They are syntactically different but semantically equivalent. In essence, let expressions are just syntactic
sugar for anonymous function application.

4.4.4 Pipeline

There is a built-in infix operator in OCaml for function application called the pipeline operator, written |>. Imagine that
as depicting a triangle pointing to the right. The metaphor is that values are sent through the pipeline from left to right.
For example, suppose we have the increment function inc from above as well as a function square that squares its
input:

let square x = x * x

val square : int -> int = <fun>

Here are two equivalent ways of squaring 6:

square (inc 5);;
5 |> inc |> square;;

- : int = 36

- : int = 36
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The latter uses the pipeline operator to send 5 through the inc function, then send the result of that through the square
function. This is a nice, idiomatic way of expressing the computation in OCaml. The former way is arguably not as
elegant: it involves writing extra parentheses and requires the reader’s eyes to jump around, rather than move linearly
from left to right. The latter way scales up nicely when the number of functions being applied grows, whereas the former
way requires more and more parentheses:

5 |> inc |> square |> inc |> inc |> square;;
square (inc (inc (square (inc 5))));;

- : int = 1444

- : int = 1444

It might feel weird at first, but try using the pipeline operator in your own code the next time you find yourself writing a
big chain of function applications.
Since e1 |> e2 is just another way of writing e2 e1, we don’t need to state the semantics for |>: it’s just the
same as function application. These two programs are another example of expressions that are syntactically different but
semantically equivalent.

4.4.5 Polymorphic Functions

The identity function is the function that simply returns its input:

let id x = x

val id : 'a -> 'a = <fun>

Or equivalently as an anonymous function:

let id = fun x -> x

val id : 'a -> 'a = <fun>

The 'a is a type variable: it stands for an unknown type, just like a regular variable stands for an unknown value.
Type variables always begin with a single quote. Commonly used type variables include 'a, 'b, and 'c, which OCaml
programmers typically pronounce in Greek: alpha, beta, and gamma.
We can apply the identity function to any type of value we like:

id 42;;
id true;;
id "bigred";;

- : int = 42

- : bool = true

- : string = "bigred"
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Because you can apply id to many types of values, it is a polymorphic function: it can be applied to many (poly) forms
(morph).
With manual type annotations, it’s possible to give a more restrictive type to a polymorphic function than the type the
compiler automatically infers. For example:

let id_int (x : int) : int = x

val id_int : int -> int = <fun>

That’s the same function as id, except for the two manual type annotations. Because of those, we cannot apply id_int
to a bool like we did id:

id_int true

File "[14]", line 1, characters 7-11:
1 | id_int true

^^^^
Error: This expression has type bool but an expression was expected of type

int

Another way of writing id_int would be in terms of id:

let id_int' : int -> int = id

val id_int' : int -> int = <fun>

In effect, we took a value of type 'a -> 'a, and we bound it to a name whose type was manually specified as being
int -> int. You might ask, why does that work? They aren’t the same types, after all.
One way to think about this is in terms of behavior. The type of id_int specifies one aspect of its behavior: given an
int as input, it promises to produce an int as output. It turns out that id also makes the same promise: given an int
as input, it too will return an int as output. Now id also makes many more promises, such as: given a bool as input,
it will return a bool as output. So by binding id to a more restrictive type int -> int, we have thrown away all
those additional promises as irrelevant. Sure, that’s information lost, but at least no promises will be broken. It’s always
going to be safe to use a function of type 'a -> 'a when what we needed was a function of type int -> int.
The converse is not true. If we needed a function of type 'a -> 'a but tried to use a function of type int -> int,
we’d be in trouble as soon as someone passed an input of another type, such as bool. To prevent that trouble, OCaml
does something potentially surprising with the following code:

let id' : 'a -> 'a = fun x -> x + 1

val id' : int -> int = <fun>

Function id' is actually the increment function, not the identity function. So passing it a bool or string or some
complicated data structure is not safe; the only data + can safely manipulate are integers. OCaml therefore instantiates
the type variable 'a to int, thus preventing us from applying id' to non-integers:

id' true
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File "[17]", line 1, characters 4-8:
1 | id' true

^^^^
Error: This expression has type bool but an expression was expected of type

int

That leads us to another, more mechanical, way to think about all of this in terms of application. By that we mean the
very same notion of how a function is applied to arguments: when evaluating the application id 5, the argument x is
instantiated with value 5. Likewise, the 'a in the type of id is being instantiated with type int at that application. So
if we write

let id_int' : int -> int = id

val id_int' : int -> int = <fun>

we are in fact instantiating the 'a in the type of id with the type int. And just as there is no way to “unapply” a
function—for example, given 5 we can’t compute backwards to id 5—we can’t unapply that type instantiation and
change int back to 'a.
To make that precise, suppose we have a let definition [or expression]:

let x = e [in e']

and that OCaml infers x has a type t that includes some type variables 'a, 'b, etc. Then we are permitted to instantiate
those type variables. We can do that by applying the function to arguments that reveal what the type instantiations should
be (as in id 5) or by a type annotation (as in id_int'), among other ways. But we have to be consistent with the
instantiation. For example, we cannot take a function of type 'a -> 'b -> 'a and instantiate it at type int ->
'b -> string, because the instantiation of 'a is not the same type in each of the two places it occurred:

let first x y = x;;
let first_int : int -> 'b -> int = first;;
let bad_first : int -> 'b -> string = first;;

val first : 'a -> 'b -> 'a = <fun>

val first_int : int -> 'b -> int = <fun>

File "[19]", line 3, characters 38-43:
3 | let bad_first : int -> 'b -> string = first;;

^^^^^
Error: This expression has type int -> 'b -> int

but an expression was expected of type int -> 'b -> string
Type int is not compatible with type string
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4.4.6 Labeled and Optional Arguments

The type and name of a function usually give you a pretty good idea of what the arguments should be. However, for
functions with many arguments (especially arguments of the same type), it can be useful to label them. For example, you
might guess that the function String.sub returns a substring of the given string (and you would be correct). You could
type in String.sub to find its type:

String.sub;;

- : string -> int -> int -> string = <fun>

But it’s not clear from the type how to use it—you’re forced to consult the documentation.
OCaml supports labeled arguments to functions. You can declare this kind of function using the following syntax:

let f ~name1:arg1 ~name2:arg2 = arg1 + arg2;;

val f : name1:int -> name2:int -> int = <fun>

This function can be called by passing the labeled arguments in either order:

f ~name2:3 ~name1:4

Labels for arguments are often the same as the variable names for them. OCaml provides a shorthand for this case. The
following are equivalent:

let f ~name1:name1 ~name2:name2 = name1 + name2
let f ~name1 ~name2 = name1 + name2

Use of labeled arguments is largely a matter of taste. They convey extra information, but they can also add clutter to
types.
The syntax to write both a labeled argument and an explicit type annotation for it is:

let f ~name1:(arg1 : int) ~name2:(arg2 : int) = arg1 + arg2

It is also possible to make some arguments optional. When called without an optional argument, a default value will be
provided. To declare such a function, use the following syntax:

let f ?name:(arg1=8) arg2 = arg1 + arg2

val f : ?name:int -> int -> int = <fun>

You can then apply the function with or without the argument:

f ~name:2 7

- : int = 9

f 7
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- : int = 15

4.4.7 Partial Application

We could define an addition function as follows:

let add x y = x + y

val add : int -> int -> int = <fun>

Here’s a rather similar function:

let addx x = fun y -> x + y

val addx : int -> int -> int = <fun>

Function addx takes an integer x as input and returns a function of type int -> int that will add x to whatever is
passed to it.
The type of addx is int -> int -> int. The type of add is also int -> int -> int. So from the perspective
of their types, they are the same function. But the form of addx suggests something interesting: we can apply it to just
a single argument.

let add5 = addx 5

val add5 : int -> int = <fun>

add5 2

- : int = 7

It turns out the same can be done with add:

let add5 = add 5

val add5 : int -> int = <fun>

add5 2;;

- : int = 7

What we just did is called partial application: we partially applied the function add to one argument, even though you
would normally think of it as a multi-argument function. This works because the following three functions are syntactically
different but semantically equivalent. That is, they are different ways of expressing the same computation:

let add x y = x + y
let add x = fun y -> x + y
let add = fun x -> (fun y -> x + y)
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So add is really a function that takes an argument x and returns a function (fun y -> x + y). Which leads us to a
deep truth…

4.4.8 Function Associativity

Are you ready for the truth? Take a deep breath. Here goes…
Every OCaml function takes exactly one argument.
Why? Consider add: although we can write it as let add x y = x + y, we know that’s semantically equivalent
to let add = fun x -> (fun y -> x + y). And in general,

let f x1 x2 ... xn = e

is semantically equivalent to

let f =
fun x1 ->
(fun x2 ->

(...
(fun xn -> e)...))

So even though you think of f as a function that takes n arguments, in reality it is a function that takes 1 argument and
returns a function.
The type of such a function

t1 -> t2 -> t3 -> t4

really means the same as

t1 -> (t2 -> (t3 -> t4))

That is, function types are right associative: there are implicit parentheses around function types, from right to left. The
intuition here is that a function takes a single argument and returns a new function that expects the remaining arguments.
Function application, on the other hand, is left associative: there are implicit parentheses around function applications,
from left to right. So

e1 e2 e3 e4

really means the same as

((e1 e2) e3) e4

The intuition here is that the left-most expression grabs the next expression to its right as its single argument.
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4.4.9 Operators as Functions

The addition operator + has type int -> int -> int. It is normally written infix, e.g., 3 + 4. By putting
parentheses around it, we can make it a prefix operator:

( + )

- : int -> int -> int = <fun>

( + ) 3 4;;

- : int = 7

let add3 = ( + ) 3

val add3 : int -> int = <fun>

add3 2

- : int = 5

The same technique works for any built-in operator.
Normally the spaces are unnecessary. We could write (+) or ( + ), but it is best to include them. Beware of
multiplication, which must be written as ( * ), because (*) would be parsed as beginning a comment.
We can even define our own new infix operators, for example:

let ( ^^ ) x y = max x y

And now 2 ^^ 3 evaluates to 3.
The rules for which punctuation can be used to create infix operators are not necessarily intuitive. Nor is the relative
precedence with which such operators will be parsed. So be careful with this usage.

4.4.10 Tail Recursion

Consider the following seemingly uninteresting function, which counts from 1 to n:

(** [count n] is [n], computed by adding 1 to itself [n] times. That is,
this function counts up from 1 to [n]. *)

let rec count n =
if n = 0 then 0 else 1 + count (n - 1)

val count : int -> int = <fun>

Counting to 10 is no problem:

count 10
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- : int = 10

Counting to 100,000 is no problem either:

count 100_000

- : int = 100000

But try counting to 1,000,000 and you’ll get the following error:

Stack overflow during evaluation (looping recursion?).

What’s going on here?
The Call Stack. The issue is that the call stack has a limited size. You probably learned in one of your introductory
programming classes that most languages implement function calls with a stack. That stack contains one element for each
function call that has been started but has not yet completed. Each element stores information like the values of local
variables and which instruction in the function is currently being executed. When the evaluation of one function body
calls another function, a new element is pushed on the call stack, and it is popped off when the called function completes.
The size of the stack is usually limited by the operating system. So if the stack runs out of space, it becomes impossible
to make another function call. Normally this doesn’t happen, because there’s no reason to make that many successive
function calls before returning. In cases where it does happen, there’s good reason for the operating system to make that
program stop: it might be in the process of eating up all the memory available on the entire computer, thus harming other
programs running on the same computer. The count function isn’t likely to do that, but this function would:

let rec count_forever n = 1 + count_forever n

val count_forever : 'a -> int = <fun>

So the operating system for safety’s sake limits the call stack size. That means eventually count will run out of stack
space on a large enough input. Notice how that choice is really independent of the programming language. So this same
issue can and does occur in languages other than OCaml, including Python and Java. You’re just less likely to have seen
it manifest there, because you probably never wrote quite as many recursive functions in those languages.
Tail Recursion. There is a solution to this issue that was described in a 1977 paper about LISP by Guy Steele. The
solution, tail-call optimization, requires some cooperation between the programmer and the compiler. The programmer
does a little rewriting of the function, which the compiler then notices and applies an optimization. Let’s see how it works.
Suppose that a recursive function f calls itself then returns the result of that recursive call. Our count function does not
do that:

let rec count n =
if n = 0 then 0 else 1 + count (n - 1)

val count : int -> int = <fun>

Rather, after the recursive call count (n - 1), there is computation remaining: the computer still needs to add 1 to
the result of that call.
But we as programmers could rewrite the count function so that it does not need to do any additional computation after
the recursive call. The trick is to create a helper function with an extra parameter:
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let rec count_aux n acc =
if n = 0 then acc else count_aux (n - 1) (acc + 1)

let count_tr n = count_aux n 0

val count_aux : int -> int -> int = <fun>

val count_tr : int -> int = <fun>

Function count_aux is almost the same as our original count, but it adds an extra parameter named acc, which is
idiomatic and stands for “accumulator”. The idea is that the value we want to return from the function is slowly, with
each recursive call, being accumulated in it. The “remaining computation” —the addition of 1— now happens before
the recursive call not after. When the base case of the recursion finally arrives, the function now returns acc, where the
answer has been accumulated.
But the original base case of 0 still needs to exist in the code somewhere. And it does, as the original value of acc that
is passed to count_aux. Now count_tr (we’ll get to why the name is “tr” in just a minute) works as a replacement
for our original count.
At this point we’ve completed the programmer’s responsibility, but it’s probably not clear why we went through this effort.
After all count_aux will still call itself recursively too many times as count did, and eventually overflow the stack.
That’s where the compiler’s responsibility kicks in. A good compiler (and the OCaml compiler is good this way) can
notice when a recursive call is in tail position, which is a technical way of saying “there’s no more computation to be done
after it returns”. The recursive call to count_aux is in tail position; the recursive call to count is not. Here they are
again so you can compare them:

let rec count n =
if n = 0 then 0 else 1 + count (n - 1)

let rec count_aux n acc =
if n = 0 then acc else count_aux (n - 1) (acc + 1)

Here’s why tail position matters: A recursive call in tail position does not need a new stack frame. It can just reuse
the existing stack frame. That’s because there’s nothing left of use in the existing stack frame! There’s no computation
left to be done, so none of the local variables, or next instruction to execute, etc. matter any more. None of that memory
ever needs to be read again, because that call is effectively already finished. So instead of wasting space by allocating
another stack frame, the compiler “recycles” the space used by the previous frame.
This is the tail-call optimization. It can even be applied in cases beyond recursive functions if the calling function’s
stack frame is suitably compatible with the callee. And, it’s a big deal. The tail-call optimization reduces the stack
space requirements from linear to constant. Whereas count needed 𝑂(𝑛) stack frames, count_aux needs only 𝑂(1),
because the same frame gets reused over and over again for each recursive call. And that means count_tr actually can
count to 1,000,000:

count_tr 1_000_000

- : int = 1000000

Finally, why did we name this function count_tr? The “tr” stands for tail recursive. A tail recursive function is a
recursive function whose recursive calls are all in tail position. In other words, it’s a function that (unless there are other
pathologies) will not exhaust the stack.
The Importance of Tail Recursion. Sometimes beginning functional programmers fixate a bit too much upon it. If all
you care about is writing the first draft of a function, you probably don’t need to worry about tail recursion. It’s pretty easy
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to make it tail recursive later if you need to, just by adding an accumulator argument. Or maybe you should rethink how
you have designed the function. Take count, for example: it’s kind of dumb. But later we’ll see examples that aren’t
dumb, such as iterating over lists with thousands of elements.
It is important that the compiler support the optimization. Otherwise, the transformation you do to the code as a pro-
grammer makes no difference. Indeed, most compilers do support it, at least as an option. Java is a notable exception.
The Recipe for Tail Recursion. In a nutshell, here’s how we made a function be tail recursive:

1. Change the function into a helper function. Add an extra argument: the accumulator, often named acc.
2. Write a new “main” version of the function that calls the helper. It passes the original base case’s return value as

the initial value of the accumulator.
3. Change the helper function to return the accumulator in the base case.
4. Change the helper function’s recursive case. It now needs to do the extra work on the accumulator argument, before

the recursive call. This is the only step that requires much ingenuity.
An Example: Factorial. Let’s transform this factorial function to be tail recursive:

(** [fact n] is [n] factorial. *)
let rec fact n =
if n = 0 then 1 else n * fact (n - 1)

val fact : int -> int = <fun>

First, we change its name and add an accumulator argument:

let rec fact_aux n acc = ...

Second, we write a new “main” function that calls the helper with the original base case as the accumulator:

let fact_tr n = fact_aux n 1

Third, we change the helper function to return the accumulator in the base case:

if n = 0 then acc ...

Finally, we change the recursive case:

else fact_aux (n - 1) (n * acc)

Putting it all together, we have:

let rec fact_aux n acc =
if n = 0 then acc else fact_aux (n - 1) (n * acc)

let fact_tr n = fact_aux n 1

val fact_aux : int -> int -> int = <fun>

val fact_tr : int -> int = <fun>

It was a nice exercise, but maybe not worthwhile. Even before we exhaust the stack space, the computation suffers from
integer overflow:

56 Chapter 4. The Basics of OCaml



OCaml Programming: Correct + Efficient + Beautiful

fact 50

- : int = -3258495067890909184

To solve that problem, we turn to OCaml’s big integer library, Zarith. Here we use a few OCaml features that are beyond
anything we’ve seen so far, but hopefully nothing terribly surprising. (If you want to follow along with this code, first
install Zarith in OPAM with opam install zarith.)

#require "zarith.top";;

let rec zfact_aux n acc =
if Z.equal n Z.zero then acc else zfact_aux (Z.pred n) (Z.mul acc n);;

let zfact_tr n = zfact_aux n Z.one;;

zfact_tr (Z.of_int 50)

val zfact_aux : Z.t -> Z.t -> Z.t = <fun>

val zfact_tr : Z.t -> Z.t = <fun>

- : Z.t = 30414093201713378043612608166064768844377641568960512000000000000

If you want you can use that code to compute zfact_tr 1_000_000 without stack or integer overflow, though it will
take several minutes.
The chapter on modules will explain the OCaml features we used above in detail, but for now:

• #require loads the library, which provides a module named Z. Recall that ℤ is the symbol used in mathematics
to denote the integers.

• Z.n means the name n defined inside of Z.
• The type Z.t is the library’s name for the type of big integers.
• We use library values Z.equal for equality comparison, Z.zero for 0, Z.pred for predecessor (i.e., subtract-
ing 1), Z.mul for multiplication, Z.one for 1, and Z.of_int to convert a primitive integer to a big integer.

4.5 Documentation

OCaml provides a tool called OCamldoc that works a lot like Java’s Javadoc tool: it extracts specially formatted comments
from source code and renders them as HTML, making it easy for programmers to read documentation.
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4.5.1 How to Document

Here’s an example of an OCamldoc comment:

(** [sum lst] is the sum of the elements of [lst]. *)
let rec sum lst = ...

• The double asterisk is what causes the comment to be recognized as an OCamldoc comment.
• The square brackets around parts of the comment mean that those parts should be rendered in HTML as type-
writer font rather than the regular font.

Also like Javadoc, OCamldoc supports documentation tags, such as @author, @deprecated, @param, @return,
etc.
For the full range of possible markup inside a OCamldoc comment, see the OCamldoc manual. But what we’ve covered
here is good enough for most documentation that you’ll need to write.

4.5.2 What to Document

The documentation style we favor in this book resembles that of the OCaml standard library: concise and declarative. As
an example, let’s revisit the documentation of sum:

(** [sum lst] is the sum of the elements of [lst]. *)
let rec sum lst = ...

That comment starts with sum lst, which is an example application of the function to an argument. The comment
continues with the word “is”, thus declaratively describing the result of the application. (The word “returns” could be used
instead, but “is” emphasizes the mathematical nature of the function.) That description uses the name of the argument,
lst, to explain the result.
Note how there is no need to add tags to redundantly describe parameters or return values, as is often done with Javadoc.
Everything that needs to be said has already been said. We strongly discourage documentation like the following:

(** Sum a list.
@param lst The list to be summed.
@return The sum of the list. *)

let rec sum lst = ...

That poor documentation takes three needlessly hard-to-read lines to say the same thing as the limpid one-line version.
There is one way we might improve the documentation we have so far, which is to explicitly state what happens with
empty lists:

(** [sum lst] is the sum of the elements of [lst].
The sum of an empty list is 0. *)

let rec sum lst = ...
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4.5.3 Preconditions and Postconditions

Here are a few more examples of comments written in the style we favor.

(** [lowercase_ascii c] is the lowercase ASCII equivalent of
character [c]. *)

(** [index s c] is the index of the first occurrence of
character [c] in string [s]. Raises: [Not_found]
if [c] does not occur in [s]. *)

(** [random_int bound] is a random integer between 0 (inclusive)
and [bound] (exclusive). Requires: [bound] is greater than 0
and less than 2^30. *)

The documentation of index specifies that the function raises an exception, as well as what that exception is and the
condition under which it is raised. (We will cover exceptions in more detail in the next chapter.) The documentation of
random_int specifies that the function’s argument must satisfy a condition.
In previous courses, you were exposed to the ideas of preconditions and postconditions. A precondition is something that
must be true before some section of code; and a postcondition, after.
The “Requires” clause above in the documentation of random_int is a kind of precondition. It says that the client
of the random_int function is responsible for guaranteeing something about the value of bound. Likewise, the first
sentence of that same documentation is a kind of postcondition. It guarantees something about the value returned by the
function.
The “Raises” clause in the documentation of index is another kind of postcondition. It guarantees that the function
raises an exception. Note that the clause is not a precondition, even though it states a condition in terms of an input.
Note that none of these examples has a “Requires” clause that says something about the type of an input. If you’re com-
ing from a dynamically-typed language, like Python, this could be a surprise. Python programmers frequently document
preconditions regarding the types of function inputs. OCaml programmers, however, do not. That’s because the compiler
itself does the type checking to ensure that you never pass a value of the wrong type to a function. Consider lower-
case_ascii again: although the English comment helpfully identifies the type of c to the reader, the comment does
not state a “Requires” clause like this:

(** [lowercase_ascii c] is the lowercase ASCII equivalent of [c].
Requires: [c] is a character. *)

Such a comment reads as highly unidiomatic to an OCaml programmer, who would read that comment and be puzzled,
perhaps thinking: “Well of course c is a character; the compiler will guarantee that. What did the person who wrote that
really mean? Is there something they or I am missing?”

4.6 Printing

OCaml has built-in printing functions for a few of the built-in primitive types: print_char, print_string,
print_int, and print_float. There’s also a print_endline function, which is like print_string, but
also outputs a newline.

print_endline "Camels are bae"

Camels are bae
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- : unit = ()

4.6.1 Unit

Let’s look at the types of a couple of those functions:

print_endline

- : string -> unit = <fun>

print_string

- : string -> unit = <fun>

They both take a string as input and return a value of type unit, which we haven’t seen before. There is only one value
of this type, which is written () and is also pronounced “unit”. So unit is like bool, except there is one fewer value
of type unit than there is of bool.
Unit is used when you need to take an argument or return a value, but there’s no interesting value to pass or return. It is
the equivalent of void in Java, and is similar to None in Python. Unit is often used when you’re writing or using code
that has side effects. Printing is an example of a side effect: it changes the world and can’t be undone.

4.6.2 Semicolon

If you want to print one thing after another, you could sequence some print functions using nested let expressions:

let _ = print_endline "Camels" in
let _ = print_endline "are" in
print_endline "bae"

Camels

are

bae

- : unit = ()

The let _ = e syntax above is a way of evaluating e but not binding its value to any name. Indeed, we know the value
each of those print_endline functions will return: it will always be (), the unit value. So there’s no good reason to
bind it to a variable name. We could also write let () = e to indicate we know it’s just a unit value that we don’t care
about:

let () = print_endline "Camels" in
let () = print_endline "are" in
print_endline "bae"
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Camels

are

bae

- : unit = ()

But either way the boilerplate of all the let..in is annoying to have to write! So there’s a special syntax that can
be used to chain together multiple functions that return unit. The expression e1; e2 first evaluates e1, which should
evaluate to (), then discards that value, and evaluates e2. So we could rewrite the above code as:

print_endline "Camels";
print_endline "are";
print_endline "bae"

Camels

are

bae

- : unit = ()

That is more idiomatic OCaml code, and it also looks more natural to imperative programmers.

Warning: There is no semicolon after the final print_endline in that example. A common mistake is to put
a semicolon after each print statement. Instead, the semicolons go strictly between statements. That is, semicolon is
a statement separator not a statement terminator. If you were to add a semicolon at the end, you could get a syntax
error depending on the surrounding code.

4.6.3 Ignore

If e1 does not have type unit, then e1; e2 will give a warning, because you are discarding a potentially useful value.
If that is truly your intent, you can call the built-in function ignore : 'a -> unit to convert any value to ():

(ignore 3); 5

- : int = 5

Actually ignore is easy to implement yourself:

let ignore x = ()

val ignore : 'a -> unit = <fun>
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Or you can even write underscore to indicate the function takes in a value but does not bind that value to a name. That
means the function can never use that value in its body. But that’s okay: we want to ignore it.

let ignore _ = ()

val ignore : 'a -> unit = <fun>

4.6.4 Printf

For complicated text outputs, using the built-in functions for primitive type printing quickly becomes tedious. For exam-
ple, suppose you wanted to write a function to print a statistic:

(** [print_stat name num] prints [name: num]. *)
let print_stat name num =
print_string name;
print_string ": ";
print_float num;
print_newline ()

val print_stat : string -> float -> unit = <fun>

print_stat "mean" 84.39

mean: 84.39

- : unit = ()

How could we shorten print_stat? In Java you might use the overloaded + operator to turn all objects into strings:

void print_stat(String name, double num) {
System.out.println(name + ": " + num);

}

But OCaml values are not objects, and they do not have a toString() method they inherit from some root Object
class. Nor does OCaml permit overloading of operators.
Long ago though, FORTRAN invented a different solution that other languages like C and Java and even Python support.
The idea is to use a format specifier to —as the name suggest— specify how to format output. The name this idea is best
known under is probably “printf”, which refers to the name of the C library function that implemented it. Many other
languages and libraries still use that name, including OCaml’s Printf module.
Here’s how we’d use printf to re-implement print_stat:

let print_stat name num =
Printf.printf "%s: %F\n%!" name num

val print_stat : string -> float -> unit = <fun>

print_stat "mean" 84.39

62 Chapter 4. The Basics of OCaml



OCaml Programming: Correct + Efficient + Beautiful

mean: 84.39

- : unit = ()

The first argument to function Printf.printf is the format specifier. It looks like a string, but there’s more to it than
that. It’s actually understood by the OCaml compiler in quite a deep way. Inside the format specifier there are:

• plain characters, and
• conversion specifiers, which begin with %.

There are about two dozen conversion specifiers available, which you can read about in the documentation of Printf.
Let’s pick apart the format specifier above as an example.

• It starts with "%s", which is the conversion specifier for strings. That means the next argument to printf must
be a string, and the contents of that string will be output.

• It continues with ": ", which are just plain characters. Those are inserted into the output.
• It then has another conversion specifier, %F. That means the next argument of printf must have type float,
and will be output in the same format that OCaml uses to print floats.

• The newline "\n" after that is another plain character sequence.
• Finally, the conversion specifier "%!" means to flush the output buffer. As you might have learned in earlier
programming classes, output is often buffered, meaning that it doesn’t all happen at once or right away. Flushing
the buffer ensures that anything still sitting in the buffer gets output immediately. This specifier is special in that it
doesn’t actually need another argument to printf.

If the type of an argument is incorrect with respect to the conversion specifier, OCaml will detect that. Let’s add a type
annotation to force num to be an int, and see what happens with the float conversion specifier %F:

let print_stat name (num : int) =
Printf.printf "%s: %F\n%!" name num

File "[14]", line 2, characters 34-37:
2 | Printf.printf "%s: %F\n%!" name num

^^^
Error: This expression has type int but an expression was expected of type

float

To fix that, we can change to the conversion specifier for int, which is %i:

let print_stat name num =
Printf.printf "%s: %i\n%!" name num

val print_stat : string -> int -> unit = <fun>

Another very useful variant of printf is sprintf, which collects the output in string instead of printing it:

let string_of_stat name num =
Printf.sprintf "%s: %F" name num

val string_of_stat : string -> float -> string = <fun>
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string_of_stat "mean" 84.39

- : string = "mean: 84.39"

4.7 Debugging

Debugging is a last resort when everything else has failed. Let’s take a step back and think about everything that comes
before debugging.

4.7.1 Defenses against Bugs

According to Rob Miller, there are four defenses against bugs:
1. The first defense against bugs is to make them impossible.

Entire classes of bugs can be eradicated by choosing to program in languages that guaranteememory safety (that no
part of memory can be accessed except through a pointer (or reference) that is valid for that region of memory) and
type safety (that no value can be used in a way inconsistent with its type). The OCaml type system, for example,
prevents programs from buffer overflows and meaningless operations (like adding a boolean to a float), whereas the
C type system does not.

2. The second defense against bugs is to use tools that find them.
There are automated source-code analysis tools, like FindBugs, which can find many common kinds of bugs in Java
programs, and SLAM, which is used to find bugs in device drivers. The subfield of CS known as formal methods
studies how to use mathematics to specify and verify programs, that is, how to prove that programs have no bugs.
We’ll study verification later in this course.
Social methods such as code reviews and pair programming are also useful tools for finding bugs. Studies at IBM
in the 1970s-1990s suggested that code reviews can be remarkably effective. In one study (Jones, 1991), code
inspection found 65% of the known coding errors and 25% of the known documentation errors, whereas testing
found only 20% of the coding errors and none of the documentation errors.

3. The third defense against bugs is to make them immediately visible.
The earlier a bug appears, the easier it is to diagnose and fix. If computation instead proceeds past the point of the
bug, then that further computation might obscure where the failure really occurred. Assertions in the source code
make programs “fail fast” and “fail loudly”, so that bugs appear immediately, and the programmer knows exactly
where in the source code to look.

4. The fourth defense against bugs is extensive testing.
How can you know whether a piece of code has a particular bug? Write tests that would expose the bug, then
confirm that your code doesn’t fail those tests. Unit tests for a relatively small piece of code, such as an individual
function or module, are especially important to write at the same time as you develop that code. Running of those
tests should be automated, so that if you ever break the code, you find out as soon as possible. (That’s really Defense
3 again.)

After all those defenses have failed, a programmer is forced to resort to debugging.
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4.7.2 How to Debug

So you’ve discovered a bug. What next?
1. Distill the bug into a small test case. Debugging is hard work, but the smaller the test case, the more likely you

are to focus your attention on the piece of code where the bug lurks. Time spent on this distillation can therefore
be time saved, because you won’t have to re-read lots of code. Don’t continue debugging until you have a small test
case!

2. Employ the scientific method. Formulate a hypothesis as to why the bug is occurring. You might even write
down that hypothesis in a notebook, as if you were in a Chemistry lab, to clarify it in your own mind and keep track
of what hypotheses you’ve already considered. Next, design an experiment to affirm or deny that hypothesis. Run
your experiment and record the result. Based on what you’ve learned, reformulate your hypothesis. Continue until
you have rationally, scientifically determined the cause of the bug.

3. Fix the bug. The fix might be a simple correction of a typo. Or it might reveal a design flaw that causes you to
make major changes. Consider whether you might need to apply the fix to other locations in your code base—for
example, was it a copy and paste error? If so, do you need to refactor your code?

4. Permanently add the small test case to your test suite. You wouldn’t want the bug to creep back into your code
base. So keep track of that small test case by keeping it as part of your unit tests. That way, any time you make
future changes, you will automatically be guarding against that same bug. Repeatedly running tests distilled from
previous bugs is a part of regression testing.

4.7.3 Debugging in OCaml

Here are a couple tips on how to debug—if you are forced into it—in OCaml.
• Print statements. Insert a print statement to ascertain the value of a variable. Suppose you want to know what the
value of x is in the following function:

let inc x = x + 1

Just add the line below to print that value:

let inc x =
let () = print_int x in
x + 1

• Function traces. Suppose you want to see the trace of recursive calls and returns for a function. Use the #trace
directive:

# let rec fib x = if x <= 1 then 1 else fib (x - 1) + fib (x - 2);;
# #trace fib;;

If you evaluate fib 2, you will now see the following output:

fib <-- 2
fib <-- 0
fib --> 1
fib <-- 1
fib --> 1
fib --> 2

To stop tracing, use the #untrace directive.
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• Debugger. OCaml has a debugging tool ocamldebug. You can find a tutorial on the OCaml website. Unless
you are using Emacs as your editor, you will probably find this tool to be harder to use than just inserting print
statements.

4.7.4 Defensive Programming

As we discussed earlier in the section on debugging, one defense against bugs is to make any bugs (or errors) immediately
visible. That idea connects with idea of preconditions.
Consider this specification of random_int:

(** [random_int bound] is a random integer between 0 (inclusive)
and [bound] (exclusive). Requires: [bound] is greater than 0
and less than 2^30. *)

If the client ofrandom_int passes a value ofbound that violates the “Requires” clause, such as-1, the implementation
of random_int is free to do anything whatsoever. All bets are off when the client violates the precondition.
But the most helpful thing for random_int to do is to immediately expose the fact that the precondition was violated.
After all, chances are that the client didn’t mean to violate it.
So the implementor of random_int would do well to check whether the precondition is violated, and if so, raise an
exception. Here are three possibilities of that kind of defensive programming:

(* possibility 1 *)
let random_int bound =

assert (bound > 0 && bound < 1 lsl 30);
(* proceed with the implementation of the function *)

(* possibility 2 *)
let random_int bound =

if not (bound > 0 && bound < 1 lsl 30)
then invalid_arg "bound";
(* proceed with the implementation of the function *)

(* possibility 3 *)
let random_int bound =

if not (bound > 0 && bound < 1 lsl 30)
then failwith "bound";
(* proceed with the implementation of the function *)

The second possibility is probably the most informative to the client, because it uses the built-in function invalid_arg
to raise the well-named exceptionInvalid_argument. In fact, that’s exactly what the standard library implementation
of this function does.
The first possibility is probably most useful when you are trying to debug your own code, rather than choosing to expose
a failed assertion to a client.
The third possibility differs from the second only in the name (Failure) of the exception that is raised. It might be
useful in situations where the precondition involves more than just a single invalid argument.
In this example, checking the precondition is computationally cheap. In other cases, it might require a lot of computa-
tion, so the implementer of the function might prefer not to check the precondition, or only to check some inexpensive
approximation to it.
Sometimes programmers worry unnecessarily that defensive programming will be too expensive—either in terms of the
time it costs them to implement the checks initially, or in the run-time costs that will be paid in checking assertions. These
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concerns are far too often misplaced. The time and money it costs society to repair faults in software suggests that we
could all afford to have programs that run a little more slowly.
Finally, the implementer might even choose to eliminate the precondition and restate it as a postcondition:

(** [random_int bound] is a random integer between 0 (inclusive)
and [bound] (exclusive). Raises: [Invalid_argument "bound"]
unless [bound] is greater than 0 and less than 2^30. *)

Now instead of being free to do whatever when bound is too big or too small, random_int must raise an exception.
For this function, that’s probably the best choice.
In this course, we’re not going to force you to program defensively. But if you’re savvy, you’ll start (or continue) doing it
anyway. The small amount of time you spend coding up such defenses will save you hours of time in debugging, making
you a more productive programmer.

4.8 Summary

Syntax and semantics are a powerful paradigm for learning a programming language. As we learn the features of OCaml,
we’re being careful to write down their syntax and semantics. We’ve seen that there can bemultiple syntaxes for expressing
the same semantic idea, that is, the same computation.
The semantics of function application is the very heart of OCaml and of functional programming, and it’s something we
will come back to several times throughout the course to deepen our understanding.

4.8.1 Terms and Concepts

• anonymous functions
• assertions
• binding
• binding expression
• body expression
• debugging
• defensive programming
• definitions
• documentation
• dynamic semantics
• evaluation
• expressions
• function application
• function definitions
• identifiers
• idioms
• if expressions

4.8. Summary 67



OCaml Programming: Correct + Efficient + Beautiful

• lambda expressions
• let definition
• let expression
• libraries
• metavariables
• mutual recursion
• pipeline operator
• postcondition
• precondition
• printing
• recursion
• semantics
• static semantics
• substitution
• syntax
• tools
• type checking
• type inference
• values

4.8.2 Further Reading

• Introduction to Objective Caml, chapter 3
• OCaml from the Very Beginning, chapter 2
• Real World OCaml, chapter 2
• Tail Recursion, TheMusical. Tail-call optimization explained in the context of JavaScript with cute 8-bit animations,
and Disney songs!

4.9 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: values [★]
What is the type and value of each of the following OCaml expressions?

• 7 * (1 + 2 + 3)

• "CS " ^ string_of_int 3110
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Hint: type each expression into the toplevel and it will tell you the answer. Note: ^ is not exponentiation.

Exercise: operators [★★]
Examine the table of all operators in the OCaml manual (you will have to scroll down to find it on that page).

• Write an expression that multiplies 42 by 10.
• Write an expression that divides 3.14 by 2.0. Hint: integer and floating-point operators are written differently in

OCaml.

• Write an expression that computes 4.2 raised to the seventh power. Note: there is no built-in integer exponentiation
operator in OCaml (nor is there in C, by the way), in part because it is not an operation provided by most CPUs.

Exercise: equality [★]
• Write an expression that compares 42 to 42 using structural equality.
• Write an expression that compares "hi" to "hi" using structural equality. What is the result?
• Write an expression that compares "hi" to "hi" using physical equality. What is the result?

Exercise: assert [★]
• Enter assert true;; into utop and see what happens.
• Enter assert false;; into utop and see what happens.
• Write an expression that asserts 2110 is not (structurally) equal to 3110.

Exercise: if [★]
Write an if expression that evaluates to 42 if 2 is greater than 1 and otherwise evaluates to 7.

Exercise: double fun [★]
Using the increment function from above as a guide, define a function double that multiplies its input by 2. For example,
double 7 would be 14. Test your function by applying it to a few inputs. Turn those test cases into assertions.

Exercise: more fun [★★]
• Define a function that computes the cube of a floating-point number. Test your function by applying it to a few
inputs.

• Define a function that computes the sign (1, 0, or -1) of an integer. Use a nested if expression. Test your function
by applying it to a few inputs.

• Define a function that computes the area of a circle given its radius. Test your function with assert.
For the latter, bear in mind that floating-point arithmetic is not exact. Instead of asserting an exact value, you should
assert that the result is “close enough”, e.g., within 1e-5. If that’s unfamiliar to you, it would be worthwhile to read up on
floating-point arithmetic.
A function that take multiple inputs can be defined just by providing additional names for those inputs as part of the let
definition. For example, the following function computes the average of three arguments:

4.9. Exercises 69

https://v2.ocaml.org/manual/expr.html#ss%3Aexpr-operators
https://floating-point-gui.de/


OCaml Programming: Correct + Efficient + Beautiful

let avg3 x y z = (x +. y +. z) /. 3.

Exercise: RMS [★★]
Define a function that computes the root mean square of two numbers—i.e., √(𝑥2 + 𝑦2)/2. Test your function with
assert.

Exercise: date fun [★★★]
Define a function that takes an integer d and string m as input and returns true just when d and m form a valid date. Here,
a valid date has a month that is one of the following abbreviations: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept, Oct,
Nov, Dec. And the day must be a number that is between 1 and the minimum number of days in that month, inclusive.
For example, if the month is Jan, then the day is between 1 and 31, inclusive, whereas if the month is Feb, then the day
is between 1 and 28, inclusive.
How terse (i.e., few and short lines of code) can you make your function? You can definitely do this in fewer than 12
lines.

Exercise: fib [★★]
Define a recursive function fib : int -> int, such that fib n is the nth number in the Fibonacci sequence,
which is 1, 1, 2, 3, 5, 8, 13, … That is:

• fib 1 = 1,
• fib 2 = 1, and
• fib n = fib (n-1) + fib (n-2) for any n > 2.

Test your function in the toplevel.

Exercise: fib fast [★★★]
How quickly does your implementation of fib compute the 50th Fibonacci number? If it computes nearly instanta-
neously, congratulations! But the recursive solution most people come up with at first will seem to hang indefinitely.
The problem is that the obvious solution computes subproblems repeatedly. For example, computing fib 5 requires
computing both fib 3 and fib 4, and if those are computed separately, a lot of work (an exponential amount, in fact)
is being redone.
Create a function fib_fast that requires only a linear amount of work. Hint: write a recursive helper function h :
int -> int -> int -> int, where h n pp p is defined as follows:

• h 1 pp p = p, and
• h n pp p = h (n-1) p (pp+p) for any n > 1.

The idea of h is that it assumes the previous two Fibonacci numbers were pp and p, then computes forward n more
numbers. Hence, fib n = h n 0 1 for any n > 0.
What is the first value of n for which fib_fast n is negative, indicating that integer overflow occurred?

Exercise: poly types [★★★]
What is the type of each of the functions below? You can ask the toplevel to check your answers.
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let f x = if x then x else x
let g x y = if y then x else x
let h x y z = if x then y else z
let i x y z = if x then y else y

Exercise: divide [★★]
Write a function divide : numerator:float -> denominator:float -> float. Apply your function.

Exercise: associativity [★★]
Suppose that we have defined let add x y = x + y. Which of the following produces an integer, which produces
a function, and which produces an error? Decide on an answer, then check your answer in the toplevel.

• add 5 1

• add 5

• (add 5) 1

• add (5 1)

Exercise: average [★★]
Define an infix operator +/. to compute the average of two floating-point numbers. For example,

• 1.0 +/. 2.0 = 1.5

• 0. +/. 0. = 0.

Exercise: hello world [★]
Type the following in utop:

• print_endline "Hello world!";;

• print_string "Hello world!";;

Notice the difference in output from each.
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CHAPTER

FIVE

DATA AND TYPES

In this chapter, we’ll examine some of OCaml’s built-in data types, including lists, variants, records, tuples, and options.
Many of those are likely to feel familiar from other programming languages. In particular,

• lists and tuples, might feel similar to Python; and
• records and variants, might feel similar to struct and enum types from C or Java.

Because of that familiarity, we call these standard data types. We’ll learn about pattern matching, which is a feature that’s
less likely to be familiar.
Almost immediately after we learn about lists, we’ll pause our study of standard data types to learn about unit testing in
OCaml with OUnit, a unit testing framework similar to those you might have used in other languages. OUnit relies on
lists, which is why we couldn’t cover it before now.
Later in the chapter, we study some OCaml data types that are unlikely to be as familiar from other languages. They
include:

• options, which are loosely related to null in Java;
• association lists, which are an amazingly simple implementation of maps (aka dictionaries) based on lists and
tuples;

• algebraic data types, which are arguably the most important kind of type in OCaml, and indeed are the power
behind many of the other built-in types; and

• exceptions, which are a special kind of algebraic data type.

5.1 Lists

AnOCaml list is a sequence of values all of which have the same type. They are implemented as singly-linked lists. These
lists enjoy a first-class status in the language: there is special support for easily creating and working with lists. That’s a
characteristic that OCaml shares with many other functional languages. Mainstream imperative languages, like Python,
have such support these days too. Maybe that’s because programmers find it so pleasant to work directly with lists as a
first-class part of the language, rather than having to go through a library (as in C and Java).
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5.1.1 Building Lists

Syntax. There are three syntactic forms for building lists:

[]
e1 :: e2
[e1; e2; ...; en]

The empty list is written [] and is pronounced “nil”, a name that comes from Lisp. Given a list lst and element elt,
we can prepend elt to lst by writing elt :: lst. The double-colon operator is pronounced “cons”, a name that
comes from an operator in Lisp that constructs objects in memory. “Cons” can also be used as a verb, as in “I will cons an
element onto the list.” The first element of a list is usually called its head and the rest of the elements (if any) are called
its tail.
The cons operator :: is right associative, meaning that e1 :: e2 :: e3 is understood as e1 :: (e2 :: e3),
not as (e1 :: e2) :: e3.
The square bracket syntax is convenient but unnecessary. Any list [e1; e2; ...; en] could instead be written
with the more primitive nil and cons syntax: e1 :: e2 :: ... :: en :: []. When a pleasant syntax can
be defined in terms of a more primitive syntax within the language, we call the pleasant syntax syntactic sugar: it makes
the language “sweeter”. Transforming the sweet syntax into the more primitive syntax is called desugaring.
Because the elements of the list can be arbitrary expressions, lists can be nested as deeply as we like, e.g., [[[]]; [[1;
2; 3]]].
Dynamic semantics.

• [] is already a value.
• If e1 evaluates to v1, and if e2 evaluates to v2, then e1 :: e2 evaluates to v1 :: v2.

As a consequence of those rules and how to desugar the square-bracket notation for lists, we have the following derived
rule:

• If ei evaluates to vi for all i in 1..n, then [e1; ...; en] evaluates to [v1; ...; vn].
It’s starting to get tedious to write “evaluates to” in all our evaluation rules. So let’s introduce a shorter notation for it.
We’ll write e ==> v to mean that e evaluates to v. Note that ==> is not a piece of OCaml syntax. Rather, it’s a notation
we use in our description of the language, kind of like metavariables. Using that notation, we can rewrite the latter two
rules above:

• If e1 ==> v1, and if e2 ==> v2, then e1 :: e2 ==> v1 :: v2.
• If ei ==> vi for all i in 1..n, then [e1; ...; en] ==> [v1; ...; vn].

Static semantics.
All the elements of a list must have the same type. If that element type is t, then the type of the list is t list. You
should read such types from right to left: t list is a list of t’s, t list list is a list of list of t’s, etc. The word
list itself here is not a type: there is no way to build an OCaml value that has type simply list. Rather, list is a
type constructor: given a type, it produces a new type. For example, given int, it produces the type int list. You
could think of type constructors as being like functions that operate on types, instead of functions that operate on values.
The type-checking rules:

• [] : 'a list

• If e1 : t and e2 : t list then e1 :: e2 : t list. In case the colons and their precedence is
confusing, the latter means (e1 :: e2) : t list.

In the rule for [], recall that 'a is a type variable: it stands for an unknown type. So the empty list is a list whose elements
have an unknown type. If we cons an int onto it, say 2 :: [], then the compiler infers that for that particular list,
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'a must be int. But if in another place we cons a bool onto it, say true :: [], then the compiler infers that for
that particular list, 'a must be bool.

5.1.2 Accessing Lists

Note: The video linked above also uses records and tuples as examples. Those are covered in a later section of this book.

There are really only two ways to build a list, with nil and cons. So if we want to take apart a list into its component pieces,
we have to say what to do with the list if it’s empty, and what to do if it’s non-empty (that is, a cons of one element onto
some other list). We do that with a language feature called pattern matching.
Here’s an example of using pattern matching to compute the sum of a list:

let rec sum lst =
match lst with
| [] -> 0
| h :: t -> h + sum t

val sum : int list -> int = <fun>

This function says to take the input lst and see whether it has the same shape as the empty list. If so, return 0. Otherwise,
if it has the same shape as the list h :: t, then let h be the first element of lst, and let t be the rest of the elements of
lst, and return h + sum t. The choice of variable names here is meant to suggest “head” and “tail” and is a common
idiom, but we could use other names if we wanted. Another common idiom is:

let rec sum xs =
match xs with
| [] -> 0
| x :: xs' -> x + sum xs'

val sum : int list -> int = <fun>

That is, the input list is a list of xs (pronounced EX-uhs), the head element is an x, and the tail is xs’ (pronounced EX-uhs
prime).
Syntactically it isn’t necessary to use so many lines to define sum. We could do it all on one line:

let rec sum xs = match xs with | [] -> 0 | x :: xs' -> x + sum xs'

val sum : int list -> int = <fun>

Or, noting that the first | after with is optional regardless of how many lines we use, we could also write:

let rec sum xs = match xs with [] -> 0 | x :: xs' -> x + sum xs'

val sum : int list -> int = <fun>

The multi-line format is what we’ll usually use in this book, because it helps the human eye understand the syntax a bit
better. OCaml code formatting tools, though, are moving toward the single-line format whenever the code is short enough
to fit on just one line.
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Here’s another example of using pattern matching to compute the length of a list:

let rec length lst =
match lst with
| [] -> 0
| h :: t -> 1 + length t

val length : 'a list -> int = <fun>

Note how we didn’t actually need the variable h in the right-hand side of the pattern match. When we want to indicate
the presence of some value in a pattern without actually giving it a name, we can write _ (the underscore character):

let rec length lst =
match lst with
| [] -> 0
| _ :: t -> 1 + length t

val length : 'a list -> int = <fun>

That function is actually built-in as part of the OCaml standard library Listmodule. Its name there is List.length.
That “dot” notation indicates the function named length inside the module named List, much like the dot notation
used in many other languages.
And here’s a third example that appends one list onto the beginning of another list:

let rec append lst1 lst2 =
match lst1 with
| [] -> lst2
| h :: t -> h :: append t lst2

val append : 'a list -> 'a list -> 'a list = <fun>

For example, append [1; 2] [3; 4] is [1; 2; 3; 4]. That function is actually available as a built-in operator
@, so we could instead write [1; 2] @ [3; 4].
As a final example, we could write a function to determine whether a list is empty:

let empty lst =
match lst with
| [] -> true
| h :: t -> false

val empty : 'a list -> bool = <fun>

But there is a much better way to write the same function without pattern matching:

let empty lst =
lst = []

val empty : 'a list -> bool = <fun>

Note how all the recursive functions above are similar to doing proofs by induction on the natural numbers: every natural
number is either 0 or is 1 greater than some other natural number 𝑛, and so a proof by induction has a base case for 0
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and an inductive case for 𝑛 + 1. Likewise, all our functions have a base case for the empty list and a recursive case for
the list that has one more element than another list. This similarity is no accident. There is a deep relationship between
induction and recursion; we’ll explore that relationship in more detail later in the book.
By the way, there are two library functions List.hd and List.tl that return the head and tail of a list. It is not good,
idiomatic OCaml to apply these directly to a list. The problem is that they will raise an exception when applied to the
empty list, and you will have to remember to handle that exception. Instead, you should use pattern matching: you’ll then
be forced to match against both the empty list and the non-empty list (at least), which will prevent exceptions from being
raised, thus making your program more robust.

5.1.3 (Not) Mutating Lists

Lists are immutable. There’s no way to change an element of a list from one value to another. Instead, OCaml program-
mers create new lists out of old lists. For example, suppose we wanted to write a function that returned the same list as
its input list, but with the first element (if there is one) incremented by one. We could do that:

let inc_first lst =
match lst with
| [] -> []
| h :: t -> h + 1 :: t

Now you might be concerned about whether we’re being wasteful of space. After all, there are at least two ways the
compiler could implement the above code:

1. Copy the entire tail list t when the new list is created in the pattern match with cons, such that the amount of
memory in use just increased by an amount proportionate to the length of t.

2. Share the tail list t between the old list and the new list, such that the amount of memory in use does not increase—
beyond the one extra piece of memory needed to store h + 1.

In fact, the compiler does the latter. So there’s no need for concern. The reason that it’s quite safe for the compiler to
implement sharing is exactly that list elements are immutable. If they were instead mutable, then we’d start having to
worry about whether the list I have is shared with the list you have, and whether changes I make will be visible in your list.
So immutability makes it easier to reason about the code, and makes it safe for the compiler to perform an optimization.

5.1.4 Pattern Matching with Lists

We saw above how to access lists using pattern matching. Let’s look more carefully at this feature.
Syntax.

match e with
| p1 -> e1
| p2 -> e2
| ...
| pn -> en

Each of the clauses pi -> ei is called a branch or a case of the pattern match. The first vertical bar in the entire pattern
match is optional.
The p’s here are a new syntactic form called a pattern. For now, a pattern may be:

• a variable name, e.g., x
• the underscore character _, which is called the wildcard

• the empty list []
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• p1 :: p2

• [p1; ...; pn]

No variable name may appear more than once in a pattern. For example, the pattern x :: x is illegal. The wildcard
may occur any number of times.
As we learn more of data structures available in OCaml, we’ll expand the possibilities for what a pattern may be.
Dynamic semantics.
Pattern matching involves two inter-related tasks: determining whether a pattern matches a value, and determining what
parts of the value should be associated with which variable names in the pattern. The former task is intuitively about
determining whether a pattern and a value have the same shape. The latter task is about determining the variable bindings
introduced by the pattern. For example, consider the following code:

match 1 :: [] with
| [] -> false
| h :: t -> h >= 1 && List.length t = 0

- : bool = true

When evaluating the right-hand side of the second branch, h is bound to 1 and t is bound to []. Let’s write h->1 to
mean the variable binding saying that h has value 1; this is not a piece of OCaml syntax, but rather a notation we use to
reason about the language. So the variable bindings produced by the second branch would be h->1, t->[].
Using that notation, here is a definition of when a pattern matches a value and the bindings that match produces:

• The pattern x matches any value v and produces the variable binding x->v.
• The pattern _ matches any value and produces no bindings.
• The pattern [] matches the value [] and produces no bindings.
• If p1matches v1 and produces a set 𝑏1 of bindings, and if p2matches v2 and produces a set 𝑏2 of bindings, then
p1 :: p2 matches v1 :: v2 and produces the set 𝑏1 ∪ 𝑏2 of bindings. Note that v2 must be a list (since it’s
on the right-hand side of ::) and could have any length: 0 elements, 1 element, or many elements. Note that the
union 𝑏1 ∪ 𝑏2 of bindings will never have a problem where the same variable is bound separately in both 𝑏1 and 𝑏2
because of the syntactic restriction that no variable name may appear more than once in a pattern.

• If for all i in 1..n, it holds that pi matches vi and produces the set 𝑏𝑖 of bindings, then [p1; ...; pn]
matches [v1; ...; vn] and produces the set⋃𝑖 𝑏𝑖 of bindings. Note that this pattern specifies the exact length
the list must be.

Now we can say how to evaluate match e with p1 -> e1 | ... | pn -> en:
• Evaluate e to a value v.
• Attempt to match v against p1, then against p2, and so on, in the order they appear in the match expression.
• If v does not match against any of the patterns, then evaluation of the match expression raises a Match_failure
exception. We haven’t yet discussed exceptions in OCaml, but you’re surely familiar with them from other lan-
guages. We’ll come back to exceptions near the end of this chapter, after we’ve covered some of the other built-in
data structures in OCaml.

• Otherwise, let pi be the first pattern that matches, and let 𝑏 be the variable bindings produced by matching v
against pi.

• Substitute those bindings 𝑏 inside ei, producing a new expression e'.
• Evaluate e' to a value v'.
• The result of the entire match expression is v'.
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For example, here’s how this match expression would be evaluated:

match 1 :: [] with
| [] -> false
| h :: t -> h = 1 && t = []

- : bool = true

• 1 :: [] is already a value.
• [] does not match 1 :: [].
• h :: t does match 1 :: [] and produces variable bindings {h->1,t->[]}, because:

– h matches 1 and produces the variable binding h->1.
– t matches [] and produces the variable binding t->[].

• Substituting {h->1,t->[]} inside h = 1 && t = [] produces a new expression 1 = 1 && [] = [].
• Evaluating 1 = 1 && [] = [] yields the value true. We omit the justification for that fact here, but it follows
from other evaluation rules for built-in operators and function application.

• So the result of the entire match expression is true.
Static semantics.

• If e : ta and for all i, it holds that pi : ta and ei : tb, then (match e with p1 -> e1 | ...
| pn -> en) : tb.

That rule relies on being able to judge whether a pattern has a particular type. As usual, type inference comes into play
here. The OCaml compiler infers the types of any pattern variables as well as all occurrences of the wildcard pattern. As
for the list patterns, they have the same type-checking rules as list expressions.
Additional Static Checking.
In addition to that type-checking rule, there are two other checks the compiler does for each match expression.
First, exhaustiveness: the compiler checks to make sure that there are enough patterns to guarantee that at least one
of them matches the expression e, no matter what the value of that expression is at run time. This ensures that the
programmer did not forget any branches. For example, the function below will cause the compiler to emit a warning:

let head lst = match lst with h :: _ -> h

File "[12]", line 1, characters 15-41:

1 | let head lst = match lst with h :: _ -> h

^^^^^^^^^^^^^^^^^^^^^^^^^^

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

[]
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val head : 'a list -> 'a = <fun>

By presenting that warning to the programmer, the compiler is helping the programmer to defend against the possibility
of Match_failure exceptions at runtime.

Note: Sorry about how the output from the cell above gets split into many lines in the HTML. That is currently an open
issue with JupyterBook, the framework used to build this book.

Second, unused branches: the compiler checks to see whether any of the branches could never be matched against
because one of the previous branches is guaranteed to succeed. For example, the function below will cause the compiler
to emit a warning:

let rec sum lst =
match lst with
| h :: t -> h + sum t
| [ h ] -> h
| [] -> 0

File "[13]", line 4, characters 4-9:

4 | | [ h ] -> h

^^^^^

Warning 11 [redundant-case]: this match case is unused.

val sum : int list -> int = <fun>

The second branch is unused because the first branch will match anything the second branch matches.
Unused match cases are usually a sign that the programmer wrote something other than what they intended. So by
presenting that warning, the compiler is helping the programmer to detect latent bugs in their code.
Here’s an example of one of the most common bugs that causes an unused match case warning. Understanding it is also
a good way to check your understanding of the dynamic semantics of match expressions:

let length_is lst n =
match List.length lst with
| n -> true
| _ -> false

File "[14]", line 4, characters 4-5:

4 | | _ -> false

^

Warning 11 [redundant-case]: this match case is unused.
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val length_is : 'a list -> 'b -> bool = <fun>

The programmer was thinking that if the length of lst is equal to n, then this function will return true, and otherwise
will return false. But in fact this function always returns true. Why? Because the pattern variable n is distinct from
the function argument n. Suppose that the length of lst is 5. Then the pattern match becomes: match 5 with n
-> true | _ -> false. Does n match 5? Yes, according to the rules above: a variable pattern matches any value
and here produces the binding n->5. Then evaluation applies that binding to true, substituting all occurrences of n
inside of true with 5. Well, there are no such occurrences. So we’re done, and the result of evaluation is just true.
What the programmer really meant to write was:

let length_is lst n =
match List.length lst with
| m -> m = n

val length_is : 'a list -> int -> bool = <fun>

or better yet:

let length_is lst n =
List.length lst = n

val length_is : 'a list -> int -> bool = <fun>

5.1.5 Deep Pattern Matching

Patterns can be nested. Doing so can allow your code to look deeply into the structure of a list. For example:
• _ :: [] matches all lists with exactly one element
• _ :: _ matches all lists with at least one element
• _ :: _ :: [] matches all lists with exactly two elements
• _ :: _ :: _ :: _ matches all lists with at least three elements

5.1.6 Immediate Matches

When you have a function that immediately pattern-matches against its final argument, there’s a nice piece of syntactic
sugar you can use to avoid writing extra code. Here’s an example: instead of

let rec sum lst =
match lst with
| [] -> 0
| h :: t -> h + sum t

val sum : int list -> int = <fun>

you can write
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let rec sum = function
| [] -> 0
| h :: t -> h + sum t

val sum : int list -> int = <fun>

The word function is a keyword. Notice that we’re able to leave out the line containing match as well as the name
of the argument, which was never used anywhere else but that line. In such cases, though, it’s especially important in the
specification comment for the function to document what that argument is supposed to be, since the code no longer gives
it a descriptive name.

5.1.7 OCamldoc and List Syntax

OCamldoc is a documentation generator similar to Javadoc. It extracts comments from source code and produces HTML
(as well as other output formats). The standard library web documentation for the List module is generated by OCamldoc
from the standard library source code for that module, for example.

Warning: There is a syntactic convention with square brackets in OCamldoc that can be confusing with respect to
lists.
In an OCamldoc comment, source code is surrounded by square brackets. That code will be rendered in typewriter
face and syntax-highlighted in the output HTML. The square brackets in this case do not indicate a list.

For example, here is the comment for List.hd in the standard library source code:

(** Return the first element of the given list. Raise
[Failure "hd"] if the list is empty. *)

The [Failure "hd"] does not mean a list containing the exception Failure "hd". Rather it means to typeset
the expression Failure "hd" as source code, as you can see here.
This can get especially confusing when you want to talk about lists as part of the documentation. For example, here is a
way we could rewrite that comment:

(** [hd lst] returns the first element of [lst].
Raises [Failure "hd"] if [lst = []]. *)

In [lst = []], the outer square brackets indicate source code as part of a comment, whereas the inner square brackets
indicate the empty list.

5.1.8 List Comprehensions

Some languages, including Python andHaskell, have a syntax called comprehension that allows lists to be written somewhat
like set comprehensions from mathematics. The earliest example of comprehensions seems to be the functional language
NPL, which was designed in 1977.
OCaml doesn’t have built-in syntactic support for comprehensions. Though some extensions were developed, none seem
to be supported any longer. The primary tasks accomplished by comprehensions (filtering out some elements, and trans-
forming others) are actually well-supported already by higher-order programming, which we’ll study in a later chapter, and
the pipeline operator, which we’ve already learned. So an additional syntax for comprehensions was never really needed.

84 Chapter 5. Data and Types

https://ocaml.org/api/List.html
https://github.com/ocaml/ocaml/blob/trunk/stdlib/list.mli
https://ocaml.org/api/List.html


OCaml Programming: Correct + Efficient + Beautiful

5.1.9 Tail Recursion

Recall that a function is tail recursive if it calls itself recursively but does not perform any computation after the recursive
call returns, and immediately returns to its caller the value of its recursive call. Consider these two implementations, sum
and sum_tr of summing a list:

let rec sum (l : int list) : int =
match l with
| [] -> 0
| x :: xs -> x + (sum xs)

let rec sum_plus_acc (acc : int) (l : int list) : int =
match l with
| [] -> acc
| x :: xs -> sum_plus_acc (acc + x) xs

let sum_tr : int list -> int =
sum_plus_acc 0

val sum : int list -> int = <fun>

val sum_plus_acc : int -> int list -> int = <fun>

val sum_tr : int list -> int = <fun>

Observe the following difference between the sum and sum_tr functions above: In the sum function, which is not
tail recursive, after the recursive call returned its value, we add x to it. In the tail recursive sum_tr, or rather in
sum_plus_acc, after the recursive call returns, we immediately return the value without further computation.
If you’re going to write functions on really long lists, tail recursion becomes important for performance. So when you have
a choice between using a tail-recursive vs. non-tail-recursive function, you are likely better off using the tail-recursive
function on really long lists to achieve space efficiency. For that reason, the List module documents which functions are
tail recursive and which are not.
But that doesn’t mean that a tail-recursive implementation is strictly better. For example, the tail-recursive function might
be harder to read. (Consider sum_plus_acc.) Also, there are cases where implementing a tail-recursive function
entails having to do a pre- or post-processing pass to reverse the list. On small- to medium-sized lists, the overhead of
reversing the list (both in time and in allocating memory for the reversed list) can make the tail-recursive version less time
efficient. What constitutes “small” vs. “big” here? That’s hard to say, but maybe 10,000 is a good estimate, according to
the standard library documentation of the List module.
Here is a useful tail-recursive function to produce a long list:

(** [from i j l] is the list containing the integers from [i] to [j],
inclusive, followed by the list [l].
Example: [from 1 3 [0] = [1; 2; 3; 0]] *)

let rec from i j l = if i > j then l else from i (j - 1) (j :: l)

(** [i -- j] is the list containing the integers from [i] to [j], inclusive. *)
let ( -- ) i j = from i j []

let long_list = 0 -- 1_000_000

val from : int -> int -> int list -> int list = <fun>
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val ( -- ) : int -> int -> int list = <fun>

val long_list : int list =
[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20;
21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38;
39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56;
57; 58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74;
75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92;
93; 94; 95; 96; 97; 98; 99; 100; 101; 102; 103; 104; 105; 106; 107; 108;
109; 110; 111; 112; 113; 114; 115; 116; 117; 118; 119; 120; 121; 122; 123;
124; 125; 126; 127; 128; 129; 130; 131; 132; 133; 134; 135; 136; 137; 138;
139; 140; 141; 142; 143; 144; 145; 146; 147; 148; 149; 150; 151; 152; 153;
154; 155; 156; 157; 158; 159; 160; 161; 162; 163; 164; 165; 166; 167; 168;
169; 170; 171; 172; 173; 174; 175; 176; 177; 178; 179; 180; 181; 182; 183;
184; 185; 186; 187; 188; 189; 190; 191; 192; 193; 194; 195; 196; 197; 198;
199; 200; 201; 202; 203; 204; 205; 206; 207; 208; 209; 210; 211; 212; 213;
214; 215; 216; 217; 218; 219; 220; 221; 222; 223; 224; 225; 226; 227; 228;
229; 230; 231; 232; 233; 234; 235; 236; 237; 238; 239; 240; 241; 242; 243;
244; 245; 246; 247; 248; 249; 250; 251; 252; 253; 254; 255; 256; 257; 258;
259; 260; 261; 262; 263; 264; 265; 266; 267; 268; 269; 270; 271; 272; 273;
274; 275; 276; 277; 278; 279; 280; 281; 282; 283; 284; 285; 286; 287; 288;
289; 290; 291; 292; 293; 294; 295; 296; 297; 298; ...]

It would be worthwhile to study the definition of -- to convince yourself that you understand (i) how it works and (ii)
why it is tail recursive.
You might in the future decide you want to create such a list again. Rather than having to remember where this definition
is, and having to copy it into your code, here’s an easy way to create the same list using a built-in library function:

List.init 1_000_000 Fun.id

- : int list =
[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20;
21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39;
40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58;
59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77;
78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95; 96;
97; 98; 99; 100; 101; 102; 103; 104; 105; 106; 107; 108; 109; 110; 111; 112;
113; 114; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124; 125; 126; 127;
128; 129; 130; 131; 132; 133; 134; 135; 136; 137; 138; 139; 140; 141; 142;
143; 144; 145; 146; 147; 148; 149; 150; 151; 152; 153; 154; 155; 156; 157;
158; 159; 160; 161; 162; 163; 164; 165; 166; 167; 168; 169; 170; 171; 172;
173; 174; 175; 176; 177; 178; 179; 180; 181; 182; 183; 184; 185; 186; 187;
188; 189; 190; 191; 192; 193; 194; 195; 196; 197; 198; 199; 200; 201; 202;
203; 204; 205; 206; 207; 208; 209; 210; 211; 212; 213; 214; 215; 216; 217;
218; 219; 220; 221; 222; 223; 224; 225; 226; 227; 228; 229; 230; 231; 232;
233; 234; 235; 236; 237; 238; 239; 240; 241; 242; 243; 244; 245; 246; 247;
248; 249; 250; 251; 252; 253; 254; 255; 256; 257; 258; 259; 260; 261; 262;
263; 264; 265; 266; 267; 268; 269; 270; 271; 272; 273; 274; 275; 276; 277;
278; 279; 280; 281; 282; 283; 284; 285; 286; 287; 288; 289; 290; 291; 292;
293; 294; 295; 296; 297; 298; ...]

Expression List.init len f creates the list [f 0; f 1; ...; f (len - 1)], and it does so tail recursively
if len is bigger than 10,000. Function Fun.id is simply the identify function fun x -> x.
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5.2 Variants

A variant is a data type representing a value that is one of several possibilities. At their simplest, variants are like enums
from C or Java:

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
let d = Tue

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

The individual names of the values of a variant are called constructors in OCaml. In the example above, the constructors
are Sun, Mon, etc. This is a somewhat different use of the word constructor than in C++ or Java.
For each kind of data type in OCaml, we’ve been discussing how to build and access it. For variants, building is easy:
just write the name of the constructor. For accessing, we use pattern matching. For example:

let int_of_day d =
match d with
| Sun -> 1
| Mon -> 2
| Tue -> 3
| Wed -> 4
| Thu -> 5
| Fri -> 6
| Sat -> 7

val int_of_day : day -> int = <fun>

There isn’t any kind of automatic way of mapping a constructor name to an int, like you might expect from languages
with enums.
Syntax.
Defining a variant type:

type t = C1 | ... | Cn

The constructor names must begin with an uppercase letter. OCaml uses that to distinguish constructors from variable
identifiers.
The syntax for writing a constructor value is simply its name, e.g., C.
Dynamic semantics.

• A constructor is already a value. There is no computation to perform.
Static semantics.

• If t is a type defined as type t = ... | C | ..., then C : t.
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5.2.1 Scope

Suppose there are two types defined with overlapping constructor names, for example,

type t1 = C | D
type t2 = D | E
let x = D

type t1 = C | D

type t2 = D | E

val x : t2 = D

When D appears after these definitions, to which type does it refer? That is, what is the type of x above? The answer is
that the type defined later wins. So x : t2. That is potentially surprising to programmers, so within any given scope
(e.g., a file or a module, though we haven’t covered modules yet) it’s idiomatic whenever overlapping constructor names
might occur to prefix them with some distinguishing character. For example, suppose we’re defining types to represent
Pokémon:

type ptype =
TNormal | TFire | TWater

type peff =
ENormal | ENotVery | ESuper

type ptype = TNormal | TFire | TWater

type peff = ENormal | ENotVery | ESuper

Because “Normal” would naturally be a constructor name for both the type of a Pokémon and the effectiveness of a Poké-
mon attack, we add an extra character in front of each constructor name to indicate whether it’s a type or an effectiveness.

5.2.2 Pattern Matching

Each time we introduced a new kind of data type, we need to introduce the new patterns associated with it. For variants,
this is easy. We add the following new pattern form to the list of legal patterns:

• a constructor name C
And we extend the definition of when a pattern matches a value and produces a binding as follows:

• The pattern C matches the value C and produces no bindings.

Note: Variants are considerably more powerful than what we have seen here. We’ll return to them again soon.
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5.3 Unit Testing with OUnit

Note: This section is a bit of a detour from our study of data types, but it’s a good place to take the detour: we now
know just enough to understand how unit testing can be done in OCaml, and there’s no good reason to wait any longer to
learn about it.

Using the toplevel to test functions will only work for very small programs. Larger programs need test suites that contain
many unit tests and can be re-run every time we update our code base. A unit test is a test of one small piece of functionality
in a program, such as an individual function.
We’ve now learned enough features of OCaml to see how to do unit testing with a library called OUnit. It is a unit testing
framework similar to JUnit in Java, HUnit in Haskell, etc. The basic workflow for using OUnit is as follows:

• Write a function in a file f.ml. There could be many other functions in that file too.
• Write unit tests for that function in a separate file test.ml. That exact name is not actually essential.
• Build and run test to execute the unit tests.

The OUnit documentation is available on GitHub.

5.3.1 An Example of OUnit

The following example shows you how to create an OUnit test suite. There are some things in the example that might at
first seem mysterious; they are discussed in the next section.
Create a new directory. In that directory, create a file named sum.ml, and put the following code into it:

let rec sum = function
| [] -> 0
| x :: xs -> x + sum xs

Now create a second file named test.ml, and put this code into it:

open OUnit2
open Sum

let tests = "test suite for sum" >::: [
"empty" >:: (fun _ -> assert_equal 0 (sum []));
"singleton" >:: (fun _ -> assert_equal 1 (sum [1]));
"two_elements" >:: (fun _ -> assert_equal 3 (sum [1; 2]));

]

let _ = run_test_tt_main tests

Depending on your editor and its configuration, you probably now see some “Unbound module” errors about OUnit2 and
Sum. Don’t worry; the code is actually correct. We just need to set up dune and tell it to link OUnit. Create a dune file
and put this in it:

(executable
(name test)
(libraries ounit2))

And create a dune-project file as usual:
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(lang dune 3.4)

Now build the test suite:

$ dune build test.exe

Go back to your editor and do anything that will cause it to revisit test.ml. You can close and re-open the window, or
make a trivial change in the file (e.g., add then delete a space). Now the errors should all disappear.
Finally, you can run the test suite:

$ dune exec ./test.exe

You will get a response something like this:

...
Ran: 3 tests in: 0.12 seconds.
OK

Now suppose we modify sum.ml to introduce a bug by changing the code in it to the following:

let rec sum = function
| [] -> 1 (* bug *)
| x :: xs -> x + sum xs

If rebuild and re-execute the test suite, all test cases now fail. The output tells us the names of the failing cases. Here’s the
beginning of the output, in which we’ve replaced some strings that will be dependent on your own local computer with
...:

FFF
==============================================================================
Error: test suite for sum:2:two_elements.

File ".../_build/oUnit-test suite for sum-...#01.log", line 9, characters 1-1:
Error: test suite for sum:2:two_elements (in the log).

Raised at OUnitAssert.assert_failure in file "src/lib/ounit2/advanced/oUnitAssert.ml",
↪ line 45, characters 2-27

Called from OUnitRunner.run_one_test.(fun) in file "src/lib/ounit2/advanced/
↪oUnitRunner.ml", line 83, characters 13-26

not equal
------------------------------------------------------------------------------

The first line of that output

FFF

tells us that OUnit ran three test cases and all three failed.
The next interesting line

Error: test suite for sum:2:two_elements.

tells us that in the test suite named test suite for sum the test case at index 2 named two_elements failed.
The rest of the output for that test case is not particularly interesting; let’s ignore it for now.
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5.3.2 Explanation of the OUnit Example

Let’s study more carefully what we just did in the previous section. In the test file, open OUnit2 brings into scope the
many definitions in OUnit2, which is version 2 of the OUnit framework. And open Sum brings into scope the definitions
from sum.ml. We’ll learn more about scope and the open keyword later in a later chapter.
Then we created a list of test cases:

[
"empty" >:: (fun _ -> assert_equal 0 (sum []));
"one" >:: (fun _ -> assert_equal 1 (sum [1]));
"onetwo" >:: (fun _ -> assert_equal 3 (sum [1; 2]));

]

Each line of code is a separate test case. A test case has a string giving it a descriptive name, and a function to run as
the test case. In between the name and the function we write >::, which is a custom operator defined by the OUnit
framework. Let’s look at the first function from above:

fun _ -> assert_equal 0 (sum [])

Every test case function receives as input a parameter that OUnit calls a test context. Here (and in many of the test cases
we write) we don’t actually need to worry about the context, so we use the underscore to indicate that the function ignores
its input. The function then calls assert_equal, which is a function provided by OUnit that checks to see whether its
two arguments are equal. If so the test case succeeds. If not, the test case fails.
Then we created a test suite:

let tests = "test suite for sum" >::: [
"empty" >:: (fun _ -> assert_equal 0 (sum []));
"singleton" >:: (fun _ -> assert_equal 1 (sum [1]));
"two_elements" >:: (fun _ -> assert_equal 3 (sum [1; 2]));

]

The >::: operator is another custom OUnit operator. It goes between the name of the test suite and the list of test cases
in that suite.
Then we ran the test suite:

let _ = run_test_tt_main tests

The function run_test_tt_main is provided by OUnit. It runs a test suite and prints the results of which test cases
passed vs. which failed to standard output. The use of let _ = here indicates that we don’t care what value the
function returns; it just gets discarded.

5.3.3 Improving OUnit Output

In our example with the buggy implementation of sum, we got the following output:

==============================================================================
Error: test suite for sum:2:two_elements.
...
not equal
------------------------------------------------------------------------------
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The not equal in the OUnit output means that assert_equal discovered the two values passed to it in that test
case were not equal. That’s not so informative: we’d like to know why they’re not equal. In particular, we’d like to know
what the actual output produced by sum was for that test case. To find out, we need to pass an additional argument
to assert_equal. That argument, whose label is printer, should be a function that can transform the outputs to
strings. In this case, the outputs are integers, so string_of_int from the Stdlib module will suffice. We modify
the test suite as follows:

let tests = "test suite for sum" >::: [
"empty" >:: (fun _ -> assert_equal 0 (sum []) ~printer:string_of_int);
"singleton" >:: (fun _ -> assert_equal 1 (sum [1]) ~printer:string_of_int);
"two_elements" >:: (fun _ -> assert_equal 3 (sum [1; 2]) ~printer:string_of_int);

]

And now we get more informative output:

==============================================================================
Error: test suite for sum:2:two_elements.
...
expected: 3 but got: 4
------------------------------------------------------------------------------

That output means that the test named two_elements asserted the equality of 3 and 4. The expected output was 3
because that was the first input to assert_equal, and that function’s specification says that in assert_equal x y,
the output you (as the tester) are expecting to get should be x, and the output the function being tested actually produces
should be y.
Notice how our test suite is accumulating a lot of redundant code. In particular, we had to add the printer argument
to several lines. Let’s improve that code by factoring out a function that constructs test cases:

let make_sum_test name expected_output input =
name >:: (fun _ -> assert_equal expected_output (sum input) ~printer:string_of_int)

let tests = "test suite for sum" >::: [
make_sum_test "empty" 0 [];
make_sum_test "singleton" 1 [1];
make_sum_test "two_elements" 3 [1; 2];

]

For output types that are more complicated than integers, you will end up needing to write your own functions to pass
to printer. This is similar to writing toString() methods in Java: for complicated types you invent yourself, the
language doesn’t know how to render them as strings. You have to provide the code that does it.
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5.3.4 Testing for Exceptions

We have a little more of OCaml to learn before we can see how to test for exceptions. You can peek ahead to the section
on exceptions if you want to know now.

5.3.5 Test-Driven Development

Testing doesn’t have to happen strictly after you write code. In test-driven development (TDD), testing comes first! It
emphasizes incremental development of code: there is always something that can be tested. Testing is not something that
happens after implementation; instead, continuous testing is used to catch errors early. Thus, it is important to develop unit
tests immediately when the code is written. Automating test suites is crucial so that continuous testing requires essentially
no effort.
Here’s an example of TDD. We deliberately choose an exceedingly simple function to implement, so that the process is
clear. Suppose we are working with a data type for days:

type day = Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

And we want to write a function next_weekday : day -> day that returns the next weekday after a given day.
We start by writing the most basic, broken version of that function we can:

let next_weekday d = failwith "Unimplemented"

Note: The built-in function failwith raises an exception along with the error message passed to the function.

Then we write the simplest unit test we can imagine. For example, we know that the next weekday after Monday is
Tuesday. So we add a test:

let tests = "test suite for next_weekday" >::: [
"tue_after_mon" >:: (fun _ -> assert_equal Tuesday (next_weekday Monday));

]

Then we run the OUnit test suite. It fails, as expected. That’s good! Now we have a concrete goal, to make that unit test
pass. We revise next_weekday to make that happen:

let next_weekday d =
match d with
| Monday -> Tuesday
| _ -> failwith "Unimplemented"

We compile and run the test; it passes. Time to add some more tests. The simplest remaining possibilities are tests
involving just weekdays, rather than weekends. So let’s add tests for weekdays.

let tests = "test suite for next_weekday" >::: [
"tue_after_mon" >:: (fun _ -> assert_equal Tuesday (next_weekday Monday));
"wed_after_tue" >:: (fun _ -> assert_equal Wednesday (next_weekday Tuesday));
"thu_after_wed" >:: (fun _ -> assert_equal Thursday(next_weekday Wednesday));
"fri_after_thu" >:: (fun _ -> assert_equal Friday (next_weekday Thursday));

]

We compile and run the tests; many fail. That’s good! We add new functionality:
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let next_weekday d =
match d with
| Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| _ -> failwith "Unimplemented"

We compile and run the tests; they pass. At this point we could move on to handling weekends, but we should first notice
something about the tests we’ve written: they involve repeating a lot of code. In fact, we probably wrote them by copying-
and-pasting the first test, then modifying it for the next three. That’s a sign that we should refactor the code. (As we did
before with the sum function we were testing.)
Let’s abstract a function that creates test cases for next_weekday:

let make_next_weekday_test name expected_output input =
name >:: (fun _ -> assert_equal expected_output (next_weekday input))

let tests = "test suite for next_weekday" >::: [
make_next_weekday_test "tue_after_mon" Tuesday Monday;
make_next_weekday_test "wed_after_tue" Wednesday Tuesday;
make_next_weekday_test "thu_after_wed" Thursday Wednesday;
make_next_weekday_test "fri_after_thu" Friday Thursday;

]

Now we finish the testing and implementation by handling weekends. First we add some test cases:

...
make_next_weekday_test "mon_after_fri" Monday Friday;
make_next_weekday_test "mon_after_sat" Monday Saturday;
make_next_weekday_test "mon_after_sun" Monday Sunday;
...

Then we finish the function:

let next_weekday d =
match d with
| Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Monday
| Saturday -> Monday
| Sunday -> Monday

Of course, most people could write that function without errors even if they didn’t use TDD. But rarely do we implement
functions that are so simple.
Process. Let’s review the process of TDD:

• Write a failing unit test case. Run the test suite to prove that the test case fails.
• Implement just enough functionality to make the test case pass. Run the test suite to prove that the test case passes.
• Improve code as needed. In the example above we refactored the test suite, but often we’ll need to refactor the
functionality being implemented.

• Repeat until you are satisfied that the test suite provides evidence that your implementation is correct.
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5.4 Records and Tuples

Singly-linked lists are a great data structure, but what if you want a fixed number of elements, instead of an unbounded
number? Or what if you want the elements to have distinct types? Or what if you want to access the elements by name
instead of by number? Lists don’t make any of those possibilities easy. Instead, OCaml programmers use records and
tuples.

5.4.1 Records

A record is a composite of other types of data, each of which is named. OCaml records are much like structs in C. Here’s
an example of a record type definition mon for a Pokémon, re-using the ptype definition from the variants section:

type ptype = TNormal | TFire | TWater
type mon = {name : string; hp : int; ptype : ptype}

type ptype = TNormal | TFire | TWater

type mon = { name : string; hp : int; ptype : ptype; }

This type defines a record with three fields named name, hp (hit points), and ptype. The type of each of those fields
is also given. Note that ptype can be used as both a type name and a field name; the namespace for those is distinct in
OCaml.
To build a value of a record type, we write a record expression, which looks like this:

{name = "Charmander"; hp = 39; ptype = TFire}

- : mon = {name = "Charmander"; hp = 39; ptype = TFire}

So in a type definition we write a colon between the name and the type of a field, but in an expression we write an equals
sign.
To access a record and get a field from it, we use the dot notation that you would expect from many other languages. For
example:

let c = {name = "Charmander"; hp = 39; ptype = TFire};;
c.hp

val c : mon = {name = "Charmander"; hp = 39; ptype = TFire}

- : int = 39

It’s also possible to use pattern matching to access record fields:

match c with {name = n; hp = h; ptype = t} -> h

- : int = 39

The n, h, and t here are pattern variables. There is a syntactic sugar provided if you want to use the same name for both
the field and a pattern variable:
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match c with {name; hp; ptype} -> hp

- : int = 39

Here, the pattern {name; hp; ptype} is sugar for {name = name; hp = hp; ptype = ptype}. In
each of those subexpressions, the identifier appearing on the left-hand side of the equals is a field name, and the identifier
appearing on the right-hand side is a pattern variable.
Syntax.
A record expression is written:

{f1 = e1; ...; fn = en}

The order of the fi=ei inside a record expression is irrelevant. For example, {f = e1; g = e2} is entirely
equivalent to {g = e2; f = e1}.
A field access is written:

e.f

where f must be an identifier of a field name, not an expression. That restriction is the same as in any other language
with similar features——for example, Java field names. If you really do want to compute which identifier to access, then
actually you want a different data structure: a map (also known by many other names: a dictionary or association list or
hash table etc., though there are subtle differences implied by each of those terms.)
Dynamic semantics.

• If for all i in 1..n, it holds that ei ==> vi, then {f1 = e1; ...; fn = en} ==> {f1 = v1;
...; fn = vn}.

• If e ==> {...; f = v; ...} then e.f ==> v.
Static semantics.
A record type is written:

{f1 : t1; ...; fn : tn}

The order of the fi:ti inside a record type is irrelevant. For example, {f : t1; g : t2} is entirely equivalent
to {g:t2;f:t1}.
Note that record types must be defined before they can be used. This enables OCaml to do better type inference than
would be possible if record types could be used without definition.
The type checking rules are:

• If for all i in 1..n, it holds that ei : ti, and if t is defined to be {f1 : t1; ...; fn : tn}, then
{f1 = e1; ...; fn = en} : t. Note that the set of fields provided in a record expression must be the
full set of fields defined as part of the record’s type (but see below regarding record copy).

• If e : t1 and if t1 is defined to be {...; f : t2; ...}, then e.f : t2.
Record copy.
Another syntax is also provided to construct a new record out of an old record:

{e with f1 = e1; ...; fn = en}
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This doesn’t mutate the old record. Rather, it constructs a new record with new values. The set of fields provided after
the with does not have to be the full set of fields defined as part of the record’s type. In the newly-copied record, any
field not provided as part of the with is copied from the old record.
Record copy is syntactic sugar. It’s equivalent to writing

{ f1 = e1; ...; fn = en;
g1 = e.g1; ...; gn = e.gn }

where the set of gi is the set of all fields of the record’s type minus the set of fi.
Pattern matching.
We add the following new pattern form to the list of legal patterns:

• {f1 = p1; ...; fn = pn}

And we extend the definition of when a pattern matches a value and produces a binding as follows:
• If for all i in 1..n, it holds that pi matches vi and produces bindings 𝑏𝑖, then the record pattern {f1 = p1;
...; fn = pn}matches the record value {f1 = v1; ...; fn = vn; ...} and produces the set ⋃𝑖 𝑏𝑖
of bindings. Note that the record value may have more fields than the record pattern does.

As a syntactic sugar, another form of record pattern is provided: {f1; ...; fn}. It is desugared to {f1 = f1;
...; fn = fn}.

5.4.2 Tuples

Like records, tuples are a composite of other types of data. But instead of naming the components, they are identified by
position. Here are some examples of tuples:

(1, 2, 10)
(true, "Hello")
([1; 2; 3], (0.5, 'X'))

A tuple with two components is called a pair. A tuple with three components is called a triple. Beyond that, we usually
just use the word tuple instead of continuing a naming scheme based on numbers.

Tip: Beyond about three components, it’s arguably better to use records instead of tuples, because it becomes hard for
a programmer to remember which component was supposed to represent what information.

Building of tuples is easy: just write the tuple, as above. Accessing again involves pattern matching, for example:

match (1, 2, 3) with (x, y, z) -> x + y + z

- : int = 6

Syntax.
A tuple is written

(e1, e2, ..., en)

The parentheses are not entirely mandatory —often your code can successfully parse without them— but they are usually
considered to be good style to include.
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Dynamic semantics.
• If for all i in 1..n it holds that ei ==> vi, then (e1, ..., en) ==> (v1, ..., vn).

Static semantics.
Tuple types are written using a new type constructor *, which is different than the multiplication operator. The type t1
* ... * tn is the type of tuples whose first component has type t1, …, and nth component has type tn.

• If for all i in 1..n it holds that ei : ti, then (e1, ..., en) : t1 * ... * tn.
Pattern matching.
We add the following new pattern form to the list of legal patterns:

• (p1, ..., pn)

The parentheses are again not entirely mandatory but usually are idiomatic to include.
And we extend the definition of when a pattern matches a value and produces a binding as follows:

• If for all i in 1..n, it holds that pi matches vi and produces bindings 𝑏𝑖, then the tuple pattern (p1, ...,
pn) matches the tuple value (v1, ..., vn) and produces the set ⋃𝑖 𝑏𝑖 of bindings. Note that the tuple value
must have exactly the same number of components as the tuple pattern does.

5.4.3 Variants vs. Tuples and Records

Note: The second video above uses more advanced examples of variants that will be studied in a later section.

The big difference between variants and the types we just learned (records and tuples) is that a value of a variant type is
one of a set of possibilities, whereas a value of a tuple or record type provides each of a set of possibilities. Going back
to our examples, a value of type day is one of Sun or Mon or etc. But a value of type mon provides each of a string
and an int and ptype. Note how, in those previous two sentences, the word “or” is associated with variant types, and
the word “and” is associated with tuple and record types. That’s a good clue if you’re ever trying to decide whether you
want to use a variant, or a tuple or record: if you need one piece of data or another, you want a variant; if you need one
piece of data and another, you want a tuple or record.
One-of types are more commonly known as sum types, and each-of types as product types. Those names come from set
theory. Variants are like disjoint union, because each value of a variant comes from one of many underlying sets (and thus
far each of those sets is just a single constructor hence has cardinality one). Disjoint union is indeed sometimes written
with a summation operator Σ. Tuples/records are like Cartesian product, because each value of a tuple or record contains
a value from each of many underlying sets. Cartesian product is usually written with a product operator, × or Π.

5.5 Advanced Pattern Matching

Here are some additional pattern forms that are useful:
• p1 | ... | pn: an “or” pattern; matching against it succeeds if a match succeeds against any of the individual
patterns pi, which are tried in order from left to right. All the patterns must bind the same variables.

• (p : t): a pattern with an explicit type annotation.
• c: here, c means any constant, such as integer literals, string literals, and booleans.
• 'ch1'..'ch2': here, ch means a character literal. For example, 'A'..'Z' matches any uppercase letter.
• p when e: matches p but only if e evaluates to true.
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You can read about all the pattern forms in the manual.

5.5.1 Pattern Matching with Let

The syntax we’ve been using so far for let expressions is, in fact, a special case of the full syntax that OCaml permits.
That syntax is:

let p = e1 in e2

That is, the left-hand side of the binding may in fact be a pattern, not just an identifier. Of course, variable identifiers are
on our list of valid patterns, so that’s why the syntax we’ve studied so far is just a special case.
Given this syntax, we revisit the semantics of let expressions.
Dynamic semantics.
To evaluate let p = e1 in e2:

1. Evaluate e1 to a value v1.
2. Match v1 against pattern p. If it doesn’t match, raise the exception Match_failure. Otherwise, if it does

match, it produces a set 𝑏 of bindings.
3. Substitute those bindings 𝑏 in e2, yielding a new expression e2'.
4. Evaluate e2' to a value v2.
5. The result of evaluating the let expression is v2.

Static semantics.
• If all the following hold then (let p = e1 in e2) : t2:

– e1 : t1

– the pattern variables in p are x1..xn
– e2 : t2 under the assumption that for all i in 1..n it holds that xi : ti,

Let definitions.
As before, a let definition can be understood as a let expression whose body has not yet been given. So their syntax can
be generalized to

let p = e

and their semantics follow from the semantics of let expressions, as before.

5.5.2 Pattern Matching with Functions

The syntax we’ve been using so far for functions is also a special case of the full syntax that OCaml permits. That syntax
is:

let f p1 ... pn = e1 in e2 (* function as part of let expression *)
let f p1 ... pn = e (* function definition at toplevel *)
fun p1 ... pn -> e (* anonymous function *)
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The truly primitive syntactic form we need to care about is fun p -> e. Let’s revisit the semantics of anonymous
functions and their application with that form; the changes to the other forms follow from those below:
Static semantics.

• Let x1..xn be the pattern variables appearing in p. If by assuming that x1 : t1 and x2 : t2 and … and
xn : tn, we can conclude that p : t and e : u, then fun p -> e : t -> u.

• The type checking rule for application is unchanged.
Dynamic semantics.

• The evaluation rule for anonymous functions is unchanged.
• To evaluate e0 e1:

1. Evaluate e0 to an anonymous function fun p -> e, and evaluate e1 to value v1.
2. Match v1 against pattern p. If it doesn’t match, raise the exception Match_failure. Otherwise, if it does

match, it produces a set 𝑏 of bindings.
3. Substitute those bindings 𝑏 in e, yielding a new expression e'.
4. Evaluate e' to a value v, which is the result of evaluating e0 e1.

5.5.3 Pattern Matching Examples

Here are several ways to get a Pokémon’s hit points:

(* Pokemon types *)
type ptype = TNormal | TFire | TWater

(* A record to represent Pokemon *)
type mon = { name : string; hp : int; ptype : ptype }

(* OK *)
let get_hp m = match m with { name = n; hp = h; ptype = t } -> h

(* better *)
let get_hp m = match m with { name = _; hp = h; ptype = _ } -> h

(* better *)
let get_hp m = match m with { name; hp; ptype } -> hp

(* better *)
let get_hp m = match m with { hp } -> hp

(* best *)
let get_hp m = m.hp

type ptype = TNormal | TFire | TWater

type mon = { name : string; hp : int; ptype : ptype; }

val get_hp : mon -> int = <fun>
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val get_hp : mon -> int = <fun>

val get_hp : mon -> int = <fun>

val get_hp : mon -> int = <fun>

val get_hp : mon -> int = <fun>

Here’s how to get the first and second components of a pair:

let fst (x, _) = x

let snd (_, y) = y

val fst : 'a * 'b -> 'a = <fun>

val snd : 'a * 'b -> 'b = <fun>

Both fst and snd are actually already defined for you in the standard library.
Finally, here are several ways to get the 3rd component of a triple:

(* OK *)
let thrd t = match t with x, y, z -> z

(* good *)
let thrd t =
let x, y, z = t in
z

(* better *)
let thrd t =
let _, _, z = t in
z

(* best *)
let thrd (_, _, z) = z

val thrd : 'a * 'b * 'c -> 'c = <fun>

val thrd : 'a * 'b * 'c -> 'c = <fun>

val thrd : 'a * 'b * 'c -> 'c = <fun>

val thrd : 'a * 'b * 'c -> 'c = <fun>

The standard library does not define any functions for triples, quadruples, etc.
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5.6 Type Synonyms

A type synonym is a new name for an already existing type. For example, here are some type synonyms that might be
useful in representing some types from linear algebra:

type point = float * float
type vector = float list
type matrix = float list list

type point = float * float

type vector = float list

type matrix = float list list

Anywhere that a float * float is expected, you could use point, and vice-versa. The two are completely ex-
changeable for one another. In the following code, get_x doesn’t care whether you pass it a value that is annotated as
one vs. the other:

let get_x = fun (x, _) -> x

let p1 : point = (1., 2.)
let p2 : float * float = (1., 3.)

let a = get_x p1
let b = get_x p2

val get_x : 'a * 'b -> 'a = <fun>

val p1 : point = (1., 2.)

val p2 : float * float = (1., 3.)

val a : float = 1.

val b : float = 1.

Type synonyms are useful because they let us give descriptive names to complex types. They are a way of making code
more self-documenting.
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5.7 Options

Suppose you want to write a function that usually returns a value of type t, but sometimes returns nothing. For example,
you might want to define a function list_max that returns the maximum value in a list, but there’s not a sensible thing
to return on an empty list:

let rec list_max = function
| [] -> ???
| h :: t -> max h (list_max t)

There are a couple possibilities to consider:
• Return min_int? But then list_max will only work for integers— not floats or other types.
• Raise an exception? But then the user of the function has to remember to catch the exception.
• Return null? That works in Java, but by design OCaml does not have a null value. That’s actually a good thing:
null pointer bugs are not fun to debug.

Note: Sir Tony Hoare calls his invention of null a “billion-dollar mistake”.

In addition to those possibilities, OCaml provides something even better called an option. (Haskellers will recognize
options as the Maybe monad.)
You can think of an option as being like a closed box. Maybe there’s something inside the box, or maybe box is empty.
We don’t know which until we open the box. If there turns out to be something inside the box when we open it, we can
take that thing out and use it. Thus, options provide a kind of “maybe type,” which ultimately is a kind of one-of type:
the box is in one of two states, full or empty.
In list_max above, we’d like to metaphorically return a box that’s empty if the list is empty, or a box that contains the
maximum element of the list if the list is non-empty.
Here’s how we create an option that is like a box with 42 inside it:

Some 42

- : int option = Some 42

And here’s how we create an option that is like an empty box:

None

- : 'a option = None

The Some means there’s something inside the box, and it’s 42. The None means there’s nothing inside the box.
Like list, we call option a type constructor: given a type, it produces a new type; but, it is not itself a type. So for
any type t, we can write t option as a type. But option all by itself cannot be used as a type. Values of type
t option might contain a value of type t, or they might contain nothing. None has type 'a option because it’s
unconstrained what the type is of the thing inside — as there isn’t anything inside.
You can access the contents of an option value e using pattern matching. Here’s a function that extracts an int from an
option, if there is one inside, and converts it to a string:
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let extract o =
match o with
| Some i -> string_of_int i
| None -> "";;

val extract : int option -> string = <fun>

And here are a couple of example usages of that function:

extract (Some 42);;
extract None;;

- : string = "42"

- : string = ""

Here’s how we can write list_max with options:

let rec list_max = function
| [] -> None
| h :: t -> begin

match list_max t with
| None -> Some h
| Some m -> Some (max h m)

end

val list_max : 'a list -> 'a option = <fun>

Tip: The begin..end wrapping the nested pattern match above is not strictly required here but is not a bad habit, as it
will head off potential syntax errors in more complicated code. The keywords begin and end are equivalent to ( and
).

In Java, every object reference is implicitly an option. Either there is an object inside the reference, or there is nothing
there. That “nothing” is represented by the value null. Java does not force programmers to explicitly check for the
null case, which leads to null pointer exceptions. OCaml options force the programmer to include a branch in the pattern
match for None, thus guaranteeing that the programmer thinks about the right thing to do when there’s nothing there. So
we can think of options as a principled way of eliminating null from the language. Using options is usually considered
better coding practice than raising exceptions, because it forces the caller to do something sensible in the None case.
Syntax and semantics of options.

• t option is a type for every type t.
• None is a value of type 'a option.
• Some e is an expression of type t option if e : t. If e ==> v then Some e ==> Some v
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5.8 Association Lists

A map is a data structure that maps keys to values. Maps are also known as dictionaries. One easy implementation of a
map is an association list, which is a list of pairs. Here, for example, is an association list that maps some shape names to
the number of sides they have:

let d = [("rectangle", 4); ("nonagon", 9); ("icosagon", 20)]

val d : (string * int) list =
[("rectangle", 4); ("nonagon", 9); ("icosagon", 20)]

Note that an association list isn’t so much a built-in data type in OCaml as a combination of two other types: lists and
pairs.
Here are two functions that implement insertion and lookup in an association list:

(** [insert k v lst] is an association list that binds key [k] to value [v]
and otherwise is the same as [lst] *)

let insert k v lst = (k, v) :: lst

(** [lookup k lst] is [Some v] if association list [lst] binds key [k] to
value [v]; and is [None] if [lst] does not bind [k]. *)

let rec lookup k = function
| [] -> None
| (k', v) :: t -> if k = k' then Some v else lookup k t

val insert : 'a -> 'b -> ('a * 'b) list -> ('a * 'b) list = <fun>

val lookup : 'a -> ('a * 'b) list -> 'b option = <fun>

The insert function simply adds a new map from a key to a value at the front of the list. It doesn’t bother to check
whether the key is already in the list. The lookup function looks through the list from left to right. So if there did
happen to be multiple maps for a given key in the list, only the most recently inserted one would be returned.
Insertion in an association list is therefore constant time, and lookup is linear time. Although there are certainly more
efficient implementations of dictionaries—and we’ll study some later in this course—association lists are a very easy and
useful implementation for small dictionaries that aren’t performance critical. The OCaml standard library has functions
for association lists in the List module; look for List.assoc and the functions below it in the documentation. What
we just wrote as lookup is actually already defined as List.assoc_opt. There is no pre-defined insert function
in the library because it’s so trivial just to cons a pair on.

5.9 Algebraic Data Types

Thus far, we have seen variants simply as enumerating a set of constant values, such as:

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type ptype = TNormal | TFire | TWater

type peff = ENormal | ENotVery | Esuper

But variants are far more powerful than this.
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5.9.1 Variants that Carry Data

As a running example, here is a variant type shape that does more than just enumerate values:

type point = float * float
type shape =
| Point of point
| Circle of point * float (* center and radius *)
| Rect of point * point (* lower-left and upper-right corners *)

type point = float * float

type shape = Point of point | Circle of point * float | Rect of point * point

This type, shape, represents a shape that is either a point, a circle, or a rectangle. A point is represented by a constructor
Point that carries some additional data, which is a value of type point. A circle is represented by a constructor
Circle that carries two pieces of data: one of type point and the other of type float. Those data represent the
center of the circle and its radius. A rectangle is represented by a constructor Rect that carries two more points.
Here are a couple functions that use the shape type:

let area = function
| Point _ -> 0.0
| Circle (_, r) -> Float.pi *. (r ** 2.0)
| Rect ((x1, y1), (x2, y2)) ->

let w = x2 -. x1 in
let h = y2 -. y1 in
w *. h

let center = function
| Point p -> p
| Circle (p, _) -> p
| Rect ((x1, y1), (x2, y2)) -> ((x2 +. x1) /. 2.0, (y2 +. y1) /. 2.0)

val area : shape -> float = <fun>

val center : shape -> point = <fun>

The shape variant type is the same as those we’ve seen before in that it is defined in terms of a collection of constructors.
What’s different than before is that those constructors carry additional data along with them. Every value of type shape
is formed from exactly one of those constructors. Sometimes we call the constructor a tag, because it tags the data it
carries as being from that particular constructor.
Variant types are sometimes called tagged unions. Every value of the type is from the set of values that is the union of all
values from the underlying types that the constructor carries. For example, with the shape type, every value is tagged
with either Point or Circle or Rect and carries a value from:

• the set of all point values, unioned with
• the set of all point * float values, unioned with
• the set of all point * point values.

Another name for these variant types is an algebraic data type. “Algebra” here refers to the fact that variant types contain
both sum and product types, as defined in the previous lecture. The sum types come from the fact that a value of a variant
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is formed by one of the constructors. The product types come from that fact that a constructor can carry tuples or records,
whose values have a sub-value from each of their component types.
Using variants, we can express a type that represents the union of several other types, but in a type-safe way. Here, for
example, is a type that represents either a string or an int:

type string_or_int =
| String of string
| Int of int

type string_or_int = String of string | Int of int

If we wanted to, we could use this type to code up lists (e.g.) that contain either strings or ints:

type string_or_int_list = string_or_int list

let rec sum : string_or_int list -> int = function
| [] -> 0
| String s :: t -> int_of_string s + sum t
| Int i :: t -> i + sum t

let lst_sum = sum [String "1"; Int 2]

type string_or_int_list = string_or_int list

val sum : string_or_int list -> int = <fun>

val lst_sum : int = 3

Variants thus provide a type-safe way of doing something that might before have seemed impossible.
Variants also make it possible to discriminate which tag a value was constructed with, even if multiple constructors carry
the same type. For example:

type t = Left of int | Right of int
let x = Left 1
let double_right = function
| Left i -> i
| Right i -> 2 * i

type t = Left of int | Right of int

val x : t = Left 1
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val double_right : t -> int = <fun>

5.9.2 Syntax and Semantics

Syntax.
To define a variant type:

type t = C1 [of t1] | ... | Cn [of tn]

The square brackets above denote that of ti is optional. Every constructor may individually either carry no data or
carry data. We call constructors that carry no data constant; and those that carry data, non-constant.
To write an expression that is a variant:

C e

Or:

C

depending on whether the constructor name C is non-constant or constant.
Dynamic semantics.

• If e ==> v then C e ==> C v, assuming C is non-constant.
• C is already a value, assuming C is constant.

Static semantics.
• If t = ... | C | ... then C : t.
• If t = ... | C of t' | ... and if e : t' then C e : t.

Pattern matching.
We add the following new pattern form to the list of legal patterns:

• C p

And we extend the definition of when a pattern matches a value and produces a binding as follows:
• If p matches v and produces bindings 𝑏, then C p matches C v and produces bindings 𝑏.

5.9.3 Catch-all Cases

One thing to beware of when pattern matching against variants is what Real World OCaml calls “catch-all cases”. Here’s
a simple example of what can go wrong. Let’s suppose you write this variant and function:

type color = Blue | Red

(* a thousand lines of code in between *)

let string_of_color = function
| Blue -> "blue"
| _ -> "red"
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type color = Blue | Red

val string_of_color : color -> string = <fun>

Seems fine, right? But then one day you realize there are more colors in the world. You need to represent green. So you
go back and add green to your variant:

type color = Blue | Red | Green

(* a thousand lines of code in between *)

let string_of_color = function
| Blue -> "blue"
| _ -> "red"

type color = Blue | Red | Green

val string_of_color : color -> string = <fun>

But because of the thousand lines of code in between, you forget that string_of_color needs updating. And now,
all the sudden, you are red-green color blind:

string_of_color Green

- : string = "red"

The problem is the catch-all case in the pattern match inside string_of_color: the final case that uses the wildcard
pattern to match anything. Such code is not robust against future changes to the variant type.
If, instead, you had originally coded the function as follows, life would be better:

let string_of_color = function
| Blue -> "blue"
| Red -> "red"

File "[9]", lines 1-3, characters 22-17:

1 | ......................function

2 | | Blue -> "blue"

3 | | Red -> "red"

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:
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Green

val string_of_color : color -> string = <fun>

The OCaml type checker now alerts you that you haven’t yet updated string_of_color to account for the new
constructor.
The moral of the story is: catch-all cases lead to buggy code. Avoid using them.

5.9.4 Recursive Variants

Variant types may mention their own name inside their own body. For example, here is a variant type that could be used
to represent something similar to int list:

type intlist = Nil | Cons of int * intlist

let lst3 = Cons (3, Nil) (* similar to 3 :: [] or [3] *)
let lst123 = Cons(1, Cons(2, lst3)) (* similar to [1; 2; 3] *)

let rec sum (l : intlist) : int =
match l with
| Nil -> 0
| Cons (h, t) -> h + sum t

let rec length : intlist -> int = function
| Nil -> 0
| Cons (_, t) -> 1 + length t

let empty : intlist -> bool = function
| Nil -> true
| Cons _ -> false

type intlist = Nil | Cons of int * intlist

val lst3 : intlist = Cons (3, Nil)

val lst123 : intlist = Cons (1, Cons (2, Cons (3, Nil)))

val sum : intlist -> int = <fun>

val length : intlist -> int = <fun>

val empty : intlist -> bool = <fun>

Notice that in the definition of intlist, we define the Cons constructor to carry a value that contains an intlist.
This makes the type intlist be recursive: it is defined in terms of itself.
Types may be mutually recursive if you use the and keyword:

type node = {value : int; next : mylist}
and mylist = Nil | Node of node
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type node = { value : int; next : mylist; }
and mylist = Nil | Node of node

Any such mutual recursion must involve at least one variant or record type that the recursion “goes through”. For example,
the following is not allowed:

type t = u and u = t

File "[12]", line 1, characters 0-10:
1 | type t = u and u = t

^^^^^^^^^^
Error: The definition of t contains a cycle:

u

But this is:

type t = U of u and u = T of t

type t = U of u
and u = T of t

Record types may also be recursive:

type node = {value : int; next : node}

type node = { value : int; next : node; }

But plain old type synonyms may not be:

type t = t * t

File "[15]", line 1, characters 0-14:
1 | type t = t * t

^^^^^^^^^^^^^^
Error: The type abbreviation t is cyclic

Although node is a legal type definition, there is no way to construct a value of that type because of the circularity
involved: to construct the very first node value in existence, you would already need a value of type node to exist.
Later, when we cover imperative features, we’ll see a similar idea used (but successfully) for mutable linked lists.

5.9.5 Parameterized Variants

Variant types may be parameterized on other types. For example, the intlist type above could be generalized to
provide lists (coded up ourselves) over any type:

type 'a mylist = Nil | Cons of 'a * 'a mylist

let lst3 = Cons (3, Nil) (* similar to [3] *)
let lst_hi = Cons ("hi", Nil) (* similar to ["hi"] *)
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type 'a mylist = Nil | Cons of 'a * 'a mylist

val lst3 : int mylist = Cons (3, Nil)

val lst_hi : string mylist = Cons ("hi", Nil)

Here, mylist is a type constructor but not a type: there is no way to write a value of type mylist. But we can write
value of type int mylist (e.g., lst3) and string mylist (e.g., lst_hi). Think of a type constructor as being
like a function, but one that maps types to types, rather than values to value.
Here are some functions over 'a mylist:

let rec length : 'a mylist -> int = function
| Nil -> 0
| Cons (_, t) -> 1 + length t

let empty : 'a mylist -> bool = function
| Nil -> true
| Cons _ -> false

val length : 'a mylist -> int = <fun>

val empty : 'a mylist -> bool = <fun>

Notice that the body of each function is unchanged from its previous definition for intlist. All that we changed was
the type annotation. And that could even be omitted safely:

let rec length = function
| Nil -> 0
| Cons (_, t) -> 1 + length t

let empty = function
| Nil -> true
| Cons _ -> false

val length : 'a mylist -> int = <fun>

val empty : 'a mylist -> bool = <fun>

The functions we just wrote are an example of a language feature called parametric polymorphism. The functions don’t
care what the 'a is in 'a mylist, hence they are perfectly happy to work on int mylist or string mylist or
any other (whatever) mylist. The word “polymorphism” is based on the Greek roots “poly” (many) and “morph”
(form). A value of type 'a mylist could have many forms, depending on the actual type 'a.
As soon, though, as you place a constraint on what the type 'a might be, you give up some polymorphism. For example,

let rec sum = function
| Nil -> 0
| Cons (h, t) -> h + sum t
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val sum : int mylist -> int = <fun>

The fact that we use the ( + ) operator with the head of the list constrains that head element to be an int, hence all
elements must be int. That means sum must take in an int mylist, not any other kind of 'a mylist.
It is also possible to have multiple type parameters for a parameterized type, in which case parentheses are needed:

type ('a, 'b) pair = {first : 'a; second : 'b}
let x = {first = 2; second = "hello"}

type ('a, 'b) pair = { first : 'a; second : 'b; }

val x : (int, string) pair = {first = 2; second = "hello"}

5.9.6 Polymorphic Variants

Thus far, whenever you’ve wanted to define a variant type, you have had to give it a name, such as day, shape, or 'a
mylist:

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type shape =
| Point of point
| Circle of point * float
| Rect of point * point

type 'a mylist = Nil | Cons of 'a * 'a mylist

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type shape = Point of point | Circle of point * float | Rect of point * point

type 'a mylist = Nil | Cons of 'a * 'a mylist

Occasionally, you might need a variant type only for the return value of a single function. For example, here’s a function
f that can either return an int or ∞; you are forced to define a variant type to represent that result:

type fin_or_inf = Finite of int | Infinity

let f = function
| 0 -> Infinity
| 1 -> Finite 1
| n -> Finite (-n)

type fin_or_inf = Finite of int | Infinity

val f : int -> fin_or_inf = <fun>

The downside of this definition is that you were forced to define fin_or_inf even though it won’t be used throughout
much of your program.
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There’s another kind of variant in OCaml that supports this kind of programming: polymorphic variants. Polymorphic
variants are just like variants, except:

1. You don’t have to declare their type or constructors before using them.
2. There is no name for a polymorphic variant type. (So another name for this feature could have been “anonymous

variants”.)
3. The constructors of a polymorphic variant start with a backquote character.

Using polymorphic variants, we can rewrite f:

let f = function
| 0 -> `Infinity
| 1 -> `Finite 1
| n -> `Finite (-n)

val f : int -> [> `Finite of int | `Infinity ] = <fun>

This type says that f either returns `Finite n for some n : int or `Infinity. The square brackets do not
denote a list, but rather a set of possible constructors. The > sign means that any code that pattern matches against a value
of that type must at least handle the constructors `Finite and `Infinity, and possibly more. For example, we
could write:

match f 3 with
| `NegInfinity -> "negative infinity"
| `Finite n -> "finite"
| `Infinity -> "infinite"

- : string = "finite"

It’s perfectly fine for the pattern match to include constructors other than `Finite or `Infinity, because f is
guaranteed never to return any constructors other than those.
There are other, more compelling uses for polymorphic variants that we’ll see later in the course. They are particularly
useful in libraries. For now, we generally will steer you away from extensive use of polymorphic variants, because their
types can become difficult to manage.

5.9.7 Built-in Variants

OCaml’s built-in list data type is really a recursive, parameterized variant. It is defined as follows:

type 'a list = [] | ( :: ) of 'a * 'a list

So list is really just a type constructor, with (value) constructors [] (which we pronounce “nil”) and :: (which we
pronounce “cons”).
OCaml’s built-in option data type is also really a parameterized variant. It’s defined as follows:

type 'a option = None | Some of 'a

So option is really just a type constructor, with (value) constructors None and Some.
You can see both list and option defined in the core OCaml library.
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5.10 Exceptions

OCaml has an exception mechanism similar to many other programming languages. A new type of OCaml exception is
defined with this syntax:

exception E of t

where E is a constructor name and t is a type. The of t is optional. Notice how this is similar to defining a constructor
of a variant type. For example:

exception A
exception B
exception Code of int
exception Details of string

exception A

exception B

exception Code of int

exception Details of string

To create an exception value, use the same syntax you would for creating a variant value. Here, for example, is an exception
value whose constructor is Failure, which carries a string:

Failure "something went wrong"

- : exn = Failure "something went wrong"

This constructor is pre-defined in the standard library and is one of themore common exceptions that OCaml programmers
use.
To raise an exception value e, simply write

raise e

There is a convenient function failwith : string -> 'a in the standard library that raises Failure. That is,
failwith s is equivalent to raise (Failure s).
To catch an exception, use this syntax:

try e with
| p1 -> e1
| ...
| pn -> en

The expression e is what might raise an exception. If it does not, the entire try expression evaluates to whatever e does.
If e does raise an exception value v, that value v is matched against the provided patterns, exactly like match expression.
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5.10.1 Exceptions are Extensible Variants

All exception values have type exn, which is a variant defined in the core. It’s an unusual kind of variant, though, called
an extensible variant, which allows new constructors of the variant to be defined after the variant type itself is defined. See
the OCaml manual for more information about extensible variants if you’re interested.

5.10.2 Exception Semantics

Since they are just variants, the syntax and semantics of exceptions is already covered by the syntax and semantics of
variants—with one exception (pun intended), which is the dynamic semantics of how exceptions are raised and handled.
Dynamic semantics. As we originally said, every OCaml expression either

• evaluates to a value
• raises an exception
• or fails to terminate (i.e., an “infinite loop”).

So far we’ve only presented the part of the dynamic semantics that handles the first of those three cases. What happens
when we add exceptions? Now, evaluation of an expression either produces a value or produces an exception packet.
Packets are not normal OCaml values; the only pieces of the language that recognizes them are raise and try. The
exception value produced by (e.g.) Failure "oops" is part of the exception packet produced by raise (Failure
"oops"), but the packet contains more than just the exception value; there can also be a stack trace, for example.
For any expression e other than try, if evaluation of a subexpression of e produces an exception packet P, then evaluation
of e produces packet P.
But now we run into a problem for the first time: what order are subexpressions evaluated in? Sometimes the answer to
that question is provided by the semantics we have already developed. For example, with let expressions, we know that
the binding expression must be evaluated before the body expression. So the following code raises A:

let _ = raise A in raise B;;

Exception: A.
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

And with functions, OCaml does not officially specify the evaluation order of a function and its argument, but the current
implementation evaluates the argument before the function. So the following code also raises A, in addition to producing
some compiler warnings that the first expression will never actually be applied as a function to an argument:

(raise B) (raise A)

It makes sense that both those pieces of code would raise the same exception, given that we know let x = e1 in
e2 is syntactic sugar for (fun x -> e2) e1.
But what does the following code raise as an exception?

(raise A, raise B)

The answer is nuanced. The language specification does not stipulate what order the components of pairs should be
evaluated in. Nor did our semantics exactly determine the order. (Though you would be forgiven if you thought it was
left to right.) So programmers actually cannot rely on that order. The current implementation of OCaml, as it turns out,
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evaluates right to left. So the code above actually raises B. If you really want to force the evaluation order, you need to
use let expressions:

let a = raise A in
let b = raise B in
(a, b)

Exception: A.
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

That code is guaranteed to raise A rather than B.
One interesting corner case is what happens when a raise expression itself has a subexpression that raises:

exception C of string;;
exception D of string;;
raise (C (raise (D "oops")))

exception C of string

exception D of string

Exception: D "oops".
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

That code ends up raising D, because the first thing that has to happen is to evaluate C (raise (D "oops"))
to a value. Doing that requires evaluating raise (D "oops") to a value. Doing that causes a packet containing
D "oops" to be produced, and that packet then propagates and becomes the result of evaluating C (raise (D
"oops")), hence the result of evaluating raise (C (raise (D "oops"))).
Once evaluation of an expression produces an exception packet P, that packet propagates until it reaches a try expression:

try e with
| p1 -> e1
| ...
| pn -> en

The exception value inside P is matched against the provided patterns using the usual evaluation rules for pattern
matching—with one exception (again, pun intended). If none of the patterns matches, then instead of producing
Match_failure inside a new exception packet, the original exception packet P continues propagating until the next
try expression is reached.
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5.10.3 Pattern Matching

There is a pattern form for exceptions. Here’s an example of its usage:

match List.hd [] with
| [] -> "empty"
| _ :: _ -> "non-empty"
| exception (Failure s) -> s

- : string = "hd"

Note that the code above is just a standard match expression, not a try expression. It matches the value of List.
hd [] against the three provided patterns. As we know, List.hd [] will raise an exception containing the value
Failure "hd". The exception pattern exception (Failure s) matches that value. So the above code will
evaluate to "hd".
Exception patterns are a kind of syntactic sugar. Consider this code for example:

match e with
| p1 -> e1
| exception p2 -> e2
| p3 -> e3
| exception p4 -> e4

We can rewrite the code to eliminate the exception pattern:

try
match e with
| p1 -> e1
| p3 -> e3

with
| p2 -> e2
| p4 -> e4

In general if there are both exception and non-exception patterns, evaluation proceeds as follows: try evaluating e. If it
produces an exception packet, use the exception patterns from the original match expression to handle that packet. If it
doesn’t produce an exception packet but instead produces a non-exception value, use the non-exception patterns from the
original match expression to match that value.

5.10.4 Exceptions and OUnit

If it is part of a function’s specification that it raises an exception, you might want to write OUnit tests that check whether
the function correctly does so. Here’s how to do that:

open OUnit2

let tests = "suite" >::: [
"empty" >:: (fun _ -> assert_raises (Failure "hd") (fun () -> List.hd []));

]

let _ = run_test_tt_main tests

The expression assert_raises exn (fun () -> e) checks to see whether expression e raises exception exn.
If so, the OUnit test case succeeds, otherwise it fails.
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Note that the second argument of assert_raises is a function of type unit -> 'a, sometimes called a “thunk”.
It may seem strange to write a function with this type—the only possible input is ()—but this is a common pattern in
functional languages to suspend or delay the evaluation of a program. In this case, we want assert_raises to evaluate
List.hd [] when it is ready. If we evaluated List.hd [] immediately, assert_raises would not be able to
check if the right exception is raised. We’ll learn more about thunks in a later chapter.

Warning: A common error is to forget the (fun () -> ...) around e. If you make this mistake, the program
may still typecheck but the OUnit test case will fail: without the extra anonymous function, the exception is raised
before assert_raises ever gets a chance to handle it.

5.11 Example: Trees

Trees are a very useful data structure. A binary tree, as you’ll recall from CS 2110, is a node containing a value and two
children that are trees. A binary tree can also be an empty tree, which we also use to represent the absence of a child
node.

5.11.1 Representation with Tuples

Here is a definition for a binary tree data type:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

A node carries a data item of type 'a and has a left and right subtree. A leaf is empty. Compare this definition to the
definition of a list and notice how similar their structure is:

type 'a tree = type 'a mylist =
| Leaf | Nil
| Node of 'a * 'a tree * 'a tree | Cons of 'a * 'a mylist

The only essential difference is that Cons carries one sublist, whereas Node carries two subtrees.
Here is code that constructs a small tree:

(* the code below constructs this tree:
4

/ \
2 5

/ \ / \
1 3 6 7

*)
let t =
Node(4,

Node(2,
Node(1, Leaf, Leaf),
Node(3, Leaf, Leaf)

),

(continues on next page)
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(continued from previous page)

Node(5,
Node(6, Leaf, Leaf),
Node(7, Leaf, Leaf)

)
)

val t : int tree =
Node (4, Node (2, Node (1, Leaf, Leaf), Node (3, Leaf, Leaf)),
Node (5, Node (6, Leaf, Leaf), Node (7, Leaf, Leaf)))

The size of a tree is the number of nodes in it (that is, Nodes, not Leafs). For example, the size of tree t above is 7.
Here is a function size : 'a tree -> int that returns the number of nodes in a tree:

let rec size = function
| Leaf -> 0
| Node (_, l, r) -> 1 + size l + size r

5.11.2 Representation with Records

Next, let’s revise our tree type to use a record type to represent a tree node. In OCaml we have to define two mutually
recursive types, one to represent a tree node, and one to represent a (possibly empty) tree:

type 'a tree =
| Leaf
| Node of 'a node

and 'a node = {
value: 'a;
left: 'a tree;
right: 'a tree

}

type 'a tree = Leaf | Node of 'a node
and 'a node = { value : 'a; left : 'a tree; right : 'a tree; }

Here’s an example tree:

(* represents
2

/ \
1 3 *)

let t =
Node {

value = 2;
left = Node {value = 1; left = Leaf; right = Leaf};
right = Node {value = 3; left = Leaf; right = Leaf}

}

val t : int tree =
Node

(continues on next page)
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(continued from previous page)

{value = 2; left = Node {value = 1; left = Leaf; right = Leaf};
right = Node {value = 3; left = Leaf; right = Leaf}}

We can use pattern matching to write the usual algorithms for recursively traversing trees. For example, here is a recursive
search over the tree:

(** [mem x t] is whether [x] is a value at some node in tree [t]. *)
let rec mem x = function
| Leaf -> false
| Node {value; left; right} -> value = x || mem x left || mem x right

val mem : 'a -> 'a tree -> bool = <fun>

The function name mem is short for “member”; the standard library often uses a function of this name to implement a
search through a collection data structure to determine whether some element is a member of that collection.
Here’s a function that computes the preorder traversal of a tree, in which each node is visited before any of its children,
by constructing a list in which the values occur in the order in which they would be visited:

let rec preorder = function
| Leaf -> []
| Node {value; left; right} -> [value] @ preorder left @ preorder right

val preorder : 'a tree -> 'a list = <fun>

preorder t

- : int list = [2; 1; 3]

Although the algorithm is beautifully clear from the code above, it takes quadratic time on unbalanced trees because of
the @ operator. That problem can be solved by introducing an extra argument acc to accumulate the values at each node,
though at the expense of making the code less clear:

let preorder_lin t =
let rec pre_acc acc = function

| Leaf -> acc
| Node {value; left; right} -> value :: (pre_acc (pre_acc acc right) left)

in pre_acc [] t

val preorder_lin : 'a tree -> 'a list = <fun>

The version above uses exactly one :: operation per Node in the tree, making it linear time.
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5.12 Example: Natural Numbers

We can define a recursive variant that acts like numbers, demonstrating that we don’t really have to have numbers built
into OCaml! (For sake of efficiency, though, it’s a good thing they are.)
A natural number is either zero or the successor of some other natural number. This is how you might define the natural
numbers in a mathematical logic course, and it leads naturally to the following OCaml type nat:

type nat = Zero | Succ of nat

type nat = Zero | Succ of nat

We have defined a new type nat, and Zero and Succ are constructors for values of this type. This allows us to build
expressions that have an arbitrary number of nested Succ constructors. Such values act like natural numbers:

let zero = Zero
let one = Succ zero
let two = Succ one
let three = Succ two
let four = Succ three

val zero : nat = Zero

val one : nat = Succ Zero

val two : nat = Succ (Succ Zero)

val three : nat = Succ (Succ (Succ Zero))

val four : nat = Succ (Succ (Succ (Succ Zero)))

Now we can write functions to manipulate values of this type. We’ll write a lot of type annotations in the code below to
help the reader keep track of which values are nat versus int; the compiler, of course, doesn’t need our help.

let iszero = function
| Zero -> true
| Succ _ -> false

let pred = function
| Zero -> failwith "pred Zero is undefined"
| Succ m -> m

val iszero : nat -> bool = <fun>

val pred : nat -> nat = <fun>

Similarly, we can define a function to add two numbers:
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let rec add n1 n2 =
match n1 with
| Zero -> n2
| Succ pred_n -> add pred_n (Succ n2)

val add : nat -> nat -> nat = <fun>

We can convert nat values to type int and vice-versa:

let rec int_of_nat = function
| Zero -> 0
| Succ m -> 1 + int_of_nat m

let rec nat_of_int = function
| i when i = 0 -> Zero
| i when i > 0 -> Succ (nat_of_int (i - 1))
| _ -> failwith "nat_of_int is undefined on negative ints"

val int_of_nat : nat -> int = <fun>

val nat_of_int : int -> nat = <fun>

To determine whether a natural number is even or odd, we can write a pair of mutually recursive functions:

let rec even = function Zero -> true | Succ m -> odd m
and odd = function Zero -> false | Succ m -> even m

val even : nat -> bool = <fun>
val odd : nat -> bool = <fun>

5.13 Summary

Lists are a highly useful built-in data structure in OCaml. The language provides a lightweight syntax for building them,
rather than requiring you to use a library. Accessing parts of a list makes use of pattern matching, a very powerful feature
(as you might expect from its rather lengthy semantics). We’ll see more uses for pattern matching as the course proceeds.
These built-in lists are implemented as singly-linked lists. That’s important to keep in mind when your needs go beyond
small- to medium-sized lists. Recursive functions on long lists will take up a lot of stack space, so tail recursion becomes
important. And if you’re attempting to process really huge lists, you probably don’t want linked lists at all, but instead a
data structure that will do a better job of exploiting memory locality.
OCaml provides data types for variants (one-of types), tuples and products (each-of types), and options (maybe types).
Pattern matching can be used to access values of each of those data types. And pattern matching can be used in let
expressions and functions.
Association lists combine lists and tuples to create a lightweight implementation of dictionaries.
Variants are a powerful language feature. They are the workhorse of representing data in a functional language. OCaml
variants actually combine several theoretically independent language features into one: sum types, product types, recursive
types, and parameterized (polymorphic) types. The result is an ability to express many kinds of data, including lists,
options, trees, and even exceptions.
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5.13.1 Terms and Concepts

• algebraic data type
• append
• association list
• binary trees as variants
• binding
• branch
• carried data
• catch-all cases
• cons
• constant constructor
• constructor
• copying
• desugaring
• each-of type
• exception
• exception as variants
• exception packet
• exception pattern
• exception value
• exhaustiveness
• field
• head
• induction
• leaf
• list
• lists as variants
• maybe type
• mutually recursive functions
• natural numbers as variants
• nil
• node
• non-constant constructor
• one-of type
• options
• options as variants
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• order of evaluation
• pair
• parameterized variant
• parametric polymorphism
• pattern matching
• prepend
• product type
• record
• recursion
• recursive variant
• sharing
• stack frame
• sum type
• syntactic sugar
• tag
• tail
• tail call
• tail recursion
• test-driven development (TDD)
• triple
• tuple
• type constructor
• type synonym
• variant
• wildcard

5.13.2 Further Reading

• Introduction to Objective Caml, chapters 4, 5.2, 5.3, 5.4, 6, 7, 8.1
• OCaml from the Very Beginning, chapters 3, 4, 5, 7, 8, 10, 11
• Real World OCaml, chapter 3, 5, 6, 7

5.13. Summary 125



OCaml Programming: Correct + Efficient + Beautiful

5.14 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: list expressions [★]
• Construct a list that has the integers 1 through 5 in it. Use the square bracket notation for lists.
• Construct the same list, but do not use the square bracket notation. Instead, use :: and [].
• Construct the same list again. This time, the following expression must appear in your answer: [2; 3; 4]. Use
the @ operator, and do not use ::.

Exercise: product [★★]
Write a function product that returns the product of all the elements in a list. The product of all the elements of an
empty list is 1.

Exercise: concat [★★]
Write a function that concatenates all the strings in a list. The concatenation of all the strings in an empty list is the empty
string "".

Exercise: product test [★★]
Unit test the function product that you wrote in an exercise above.

Exercise: patterns [★★★]
Using pattern matching, write three functions, one for each of the following properties. Your functions should return
true if the input list has the property and false otherwise.

• the list’s first element is "bigred"
• the list has exactly two or four elements; do not use the length function
• the first two elements of the list are equal

Exercise: library [★★★]
Consult the List standard library to solve these exercises:

• Write a function that takes an int list and returns the fifth element of that list, if such an element exists. If the
list has fewer than five elements, return 0. Hint: List.length and List.nth.

• Write a function that takes an int list and returns the list sorted in descending order. Hint: List.sort with
Stdlib.compare as its first argument, and List.rev.
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Exercise: library test [★★★]
Write a couple OUnit unit tests for each of the functions you wrote in the previous exercise.

Exercise: library puzzle [★★★]
• Write a function that returns the last element of a list. Your function may assume that the list is non-empty. Hint:

Use two library functions, and do not write any pattern matching code of your own.

• Write a function any_zeros : int list -> bool that returns true if and only if the input list contains
at least one 0. Hint: use one library function, and do not write any pattern matching code of your own.

Your solutions will be only one or two lines of code each.

Exercise: take drop [★★★]
• Write a function take : int -> 'a list -> 'a list such that take n lst returns the first n
elements of lst. If lst has fewer than n elements, return all of them.

• Write a function drop : int -> 'a list -> 'a list such that drop n lst returns all but the first
n elements of lst. If lst has fewer than n elements, return the empty list.

Exercise: take drop tail [★★★★]
Revise your solutions for take and drop to be tail recursive, if they aren’t already. Test them on long lists with large
values of n to see whether they run out of stack space. To construct long lists, use the -- operator from the lists section.

Exercise: unimodal [★★★]
Write a function is_unimodal : int list -> bool that takes an integer list and returns whether that list is
unimodal. A unimodal list is a list that monotonically increases to some maximum value then monotonically decreases
after that value. Either or both segments (increasing or decreasing) may be empty. A constant list is unimodal, as is the
empty list.

Exercise: powerset [★★★]
Write a function powerset : int list -> int list list that takes a set S represented as a list and returns
the set of all subsets of S. The order of subsets in the powerset and the order of elements in the subsets do not matter.
Hint: Consider the recursive structure of this problem. Suppose you already have p, such that p = powerset s. How
could you use p to compute powerset (x :: s)?

Exercise: print int list rec [★★]
Write a function print_int_list : int list -> unit that prints its input list, one number per line. For
example, print_int_list [1; 2; 3] should result in this output:

1
2
3
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Here is some code to get you started:

let rec print_int_list = function
| [] -> ()
| h :: t -> (* fill in here *); print_int_list t

Exercise: print int list iter [★★]
Write a function print_int_list' : int list -> unit whose specification is the same as
print_int_list. Do not use the keyword rec in your solution, but instead to use the List module function List.
iter. Here is some code to get you started:

let print_int_list' lst =
List.iter (fun x -> (* fill in here *)) lst

Exercise: student [★★]
Assume the following type definition:

type student = {first_name : string; last_name : string; gpa : float}

Give OCaml expressions that have the following types:
• student

• student -> string * string (a function that extracts the student’s name)
• string -> string -> float -> student (a function that creates a student record)

Exercise: pokerecord [★★]
Here is a variant that represents a few Pokémon types:

type poketype = Normal | Fire | Water

• Define the type pokemon to be a record with fields name (a string), hp (an integer), and ptype (a poketype).
• Create a record named charizard of type pokemon that represents a Pokémon with 78 HP and Fire type.
• Create a record named squirtle of type pokemon that represents a Pokémon with 44 HP and Water type.

Exercise: safe hd and tl [★★]
Write a function safe_hd : 'a list -> 'a option that returns Some x if the head of the input list is x,
and None if the input list is empty.
Also write a function safe_tl : 'a list -> 'a list option that returns the tail of the list, or None if
the list is empty.

Exercise: pokefun [★★★]
Write a function max_hp : pokemon list -> pokemon option that, given a list of pokemon, finds the
Pokémon with the highest HP.
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Exercise: date before [★★]
Define a date-like triple to be a value of type int * int * int. Examples of date-like triples include (2013, 2,
1) and (0, 0, 1000). A date is a date-like triple whose first part is a positive year (i.e., a year in the common era),
second part is a month between 1 and 12, and third part is a day between 1 and 31 (or 30, 29, or 28, depending on the
month and year). (2013, 2, 1) is a date; (0, 0, 1000) is not.
Write a function is_before that takes two dates as input and evaluates to true or false. It evaluates to true if
the first argument is a date that comes before the second argument. (If the two dates are the same, the result is false.)
Your function needs to work correctly only for dates, not for arbitrary date-like triples. However, you will probably find
it easier to write your solution if you think about making it work for arbitrary date-like triples. For example, it’s easier
to forget about whether the input is truly a date, and simply write a function that claims (for example) that January 100,
2013 comes before February 34, 2013—because any date in January comes before any date in February, but a function
that says that January 100, 2013 comes after February 34, 2013 is also valid. You may ignore leap years.

Exercise: earliest date [★★★]
Write a function earliest : (int*int*int) list -> (int * int * int) option. It evaluates to
None if the input list is empty, and to Some d if date d is the earliest date in the list. Hint: use is_before.

As in the previous exercise, your function needs to work correctly only for dates, not for arbitrary date-like triples.

Exercise: assoc list [★]
Use the functions insert and lookup from the section on association lists to construct an association list that maps the
integer 1 to the string “one”, 2 to “two”, and 3 to “three”. Lookup the key 2. Lookup the key 4.

Exercise: cards [★★]
• Define a variant type suit that represents the four suits, ♣♦♥♠, in a standard 52-card deck. All the constructors
of your type should be constant.

• Define a type rank that represents the possible ranks of a card: 2, 3, …, 10, Jack, Queen, King, or Ace. There
are many possible solutions; you are free to choose whatever works for you. One is to make rank be a synonym
of int, and to assume that Jack=11, Queen=12, King=13, and Ace=1 or 14. Another is to use variants.

• Define a type card that represents the suit and rank of a single card. Make it a record with two fields.
• Define a few values of type card: the Ace of Clubs, the Queen of Hearts, the Two of Diamonds, the Seven of
Spades.

Exercise: matching [★]
For each pattern in the list below, give a value of type int option list that does not match the pattern and is not
the empty list, or explain why that’s impossible.

• Some x :: tl

• [Some 3110; None]

• [Some x; _]

• h1 :: h2 :: tl
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• h :: tl

Exercise: quadrant [★★]

Complete the quadrant function below, which should return the quadrant of the given x, y point according to the
diagram on the right (borrowed from Wikipedia). Points that lie on an axis do not belong to any quadrant. Hints: (a)
define a helper function for the sign of an integer, (b) match against a pair.

type quad = I | II | III | IV
type sign = Neg | Zero | Pos

let sign (x:int) : sign =
...

let quadrant : int*int -> quad option = fun (x,y) ->
match ... with
| ... -> Some I
| ... -> Some II
| ... -> Some III
| ... -> Some IV
| ... -> None

Exercise: quadrant when [★★]
Rewrite the quadrant function to use the when syntax. You won’t need your helper function from before.

let quadrant_when : int*int -> quad option = function
| ... when ... -> Some I
| ... when ... -> Some II
| ... when ... -> Some III
| ... when ... -> Some IV
| ... -> None

Exercise: depth [★★]
Write a function depth : 'a tree -> int that returns the number of nodes in any longest path from the root to
a leaf. For example, the depth of an empty tree (simply Leaf) is 0, and the depth of tree t above is 3. Hint: there is a
library function max : 'a -> 'a -> 'a that returns the maximum of any two values of the same type.

Exercise: shape [★★★]
Write a function same_shape : 'a tree -> 'b tree -> bool that determines whether two trees have the
same shape, regardless of whether the values they carry at each node are the same. Hint: use a pattern match with three
branches, where the expression being matched is a pair of trees.

Exercise: list max exn [★★]
Write a function list_max : int list -> int that returns the maximum integer in a list, or raises Failure
"list_max" if the list is empty.
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Exercise: list max exn string [★★]
Write a function list_max_string : int list -> string that returns a string containing the maximum
integer in a list, or the string "empty" (note, not the exception Failure "empty" but just the string "empty") if
the list is empty. Hint: string_of_int in the standard library will do what its name suggests.

Exercise: list max exn ounit [★]
Write two OUnit tests to determine whether your solution to list max exn, above, correctly raises an exception when its
input is the empty list, and whether it correctly returns the max value of the input list when that list is non-empty.

Exercise: is_bst [★★★★]
Write a function is_bst : ('a*'b) tree -> bool that returns true if and only if the given tree satisfies the
binary search tree invariant. An efficient version of this function that visits each node at most once is somewhat tricky to
write. Hint: write a recursive helper function that takes a tree and either gives you (i) the minimum and maximum value
in the tree, or (ii) tells you that the tree is empty, or (iii) tells you that the tree does not satisfy the invariant. Your is_bst
function will not be recursive, but will call your helper function and pattern match on the result. You will need to define a
new variant type for the return type of your helper function.

Exercise: quadrant poly [★★]
Modify your definition of quadrant to use polymorphic variants. The types of your functions should become these:

val sign : int -> [> `Neg | `Pos | `Zero ]
val quadrant : int * int -> [> `I | `II | `III | `IV ] option
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CHAPTER

SIX

HIGHER-ORDER PROGRAMMING

Functions are values just like any other value in OCaml. What does that mean exactly? This means that we can pass
functions around as arguments to other functions, that we can store functions in data structures, that we can return functions
as a result from other functions, and so forth.
Higher-order functions either take other functions as input or return other functions as output (or both). Higher-order
functions are also known as functionals, and programming with them could therefore be called functional programming—
indicating what the heart of programming in languages like OCaml is all about.
Higher-order functions were one of the more recent adoptions from functional languages into mainstream languages. The
Java 8 Streams library and Python 2.3’s itertools modules are examples of that; C++ has also been increasing its
support since at least 2011.

Note: C wizards might object the adoption isn’t so recent. After all, C has long had the ability to do higher-order
programming through function pointers. But that ability also depends on the programming pattern of passing an additional
environment parameter to provide the values of variables in the function to be called through the pointer. As we’ll see in
our later chapter on interpreters, the essence of (higher-order) functions in a functional language is that they are really
something called a closure that obviates the need for that extra parameter. Bear in mind that the issue is not what is
possible to compute in a language—after all everything is eventually compiled down to machine code, so we could just
write in that exclusively—but what is pleasant to compute.

In this chapter we will see what all the fuss is about. Higher-order functions enable beautiful, general, reusable code.

6.1 Higher-Order Functions

Consider these functions double and square on integers:

let double x = 2 * x
let square x = x * x

val double : int -> int = <fun>

val square : int -> int = <fun>

Let’s use these functions to write other functions that quadruple and raise a number to the fourth power:

let quad x = double (double x)
let fourth x = square (square x)
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val quad : int -> int = <fun>

val fourth : int -> int = <fun>

There is an obvious similarity between these two functions: what they do is apply a given function twice to a value. By
passing in the function to another function twice as an argument, we can abstract this functionality:

let twice f x = f (f x)

val twice : ('a -> 'a) -> 'a -> 'a = <fun>

The function twice is higher-order: its input f is a function. And—recalling that all OCaml functions really take only a
single argument—its output is technically fun x -> f (f x), so twice returns a function hence is also higher-order
in that way.
Using twice, we can implement quad and fourth in a uniform way:

let quad x = twice double x
let fourth x = twice square x

val quad : int -> int = <fun>

val fourth : int -> int = <fun>

6.1.1 The Abstraction Principle

Above, we have exploited the structural similarity between quad and fourth to save work. Admittedly, in this toy
example it might not seem likemuchwork. But imagine thattwicewere actually somemuchmore complicated function.
Then, if someone comes up with a more efficient version of it, every function written in terms of it (like quad and
fourth) could benefit from that improvement in efficiency, without needing to be recoded.
Part of being an excellent programmer is recognizing such similarities and abstracting them by creating functions (or other
units of code) that implement them. Bruce MacLennan names this the Abstraction Principle in his textbook Functional
Programming: Theory and Practice (1990). The Abstraction Principle says to avoid requiring something to be stated more
than once; instead, factor out the recurring pattern. Higher-order functions enable such refactoring, because they allow
us to factor out functions and parameterize functions on other functions.
Besides twice, here are some more relatively simple examples, indebted also to MacLennan:
Apply. We can write a function that applies its first input to its second input:

let apply f x = f x

val apply : ('a -> 'b) -> 'a -> 'b = <fun>

Of course, writing apply f is a lot more work than just writing f.
Pipeline. The pipeline operator, which we’ve previously seen, is a higher-order function:
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let pipeline x f = f x
let (|>) = pipeline
let x = 5 |> double

val pipeline : 'a -> ('a -> 'b) -> 'b = <fun>

val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

val x : int = 10

Compose. We can write a function that composes two other functions:

let compose f g x = f (g x)

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

This function would let us create a new function that can be applied many times, such as the following:

let square_then_double = compose double square
let x = square_then_double 1
let y = square_then_double 2

val square_then_double : int -> int = <fun>

val x : int = 2

val y : int = 8

Both. We can write a function that applies two functions to the same argument and returns a pair of the result:

let both f g x = (f x, g x)
let ds = both double square
let p = ds 3

val both : ('a -> 'b) -> ('a -> 'c) -> 'a -> 'b * 'c = <fun>

val ds : int -> int * int = <fun>

val p : int * int = (6, 9)

Cond. We can write a function that conditionally chooses which of two functions to apply based on a predicate:

let cond p f g x =
if p x then f x else g x

val cond : ('a -> bool) -> ('a -> 'b) -> ('a -> 'b) -> 'a -> 'b = <fun>
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6.1.2 The Meaning of “Higher Order”

The phrase “higher order” is used throughout logic and computer science, though not necessarily with a precise or con-
sistent meaning in all cases.
In logic, first-order quantification refers primarily to the universal and existential (∀ and ∃) quantifiers. These let you
quantify over some domain of interest, such as the natural numbers. But for any given quantification, say ∀𝑥, the variable
being quantified represents an individual element of that domain, say the natural number 42.
Second-order quantification lets you do something strictly more powerful, which is to quantify over properties of the
domain. Properties are assertions about individual elements, for example, that a natural number is even, or that it is prime.
In some logics we can equate properties with sets of individual, for example the set of all even naturals. So second-order
quantification is often thought of as quantification over sets. You can also think of properties as being functions that take
in an element and return a Boolean indicating whether the element satisfies the property; this is called the characteristic
function of the property.
Third-order logic would allow quantification over properties of properties, and fourth-order over properties of properties
of properties, and so forth. Higher-order logic refers to all these logics that are more powerful than first-order logic; though
one interesting result in this area is that all higher-order logics can be expressed in second-order logic.
In programming languages, first-order functions similarly refer to functions that operate on individual data elements (e.g.,
strings, ints, records, variants, etc.). Whereas higher-order function can operate on functions, much like higher-order
logics can quantify over properties (which are like functions).

6.1.3 Famous Higher-order Functions

In the next few sections we’ll dive into three of the most famous higher-order functions: map, filter, and fold. These are
functions that can be defined for many data structures, including lists and trees. The basic idea of each is that:

• map transforms elements,
• filter eliminates elements, and
• fold combines elements.

6.2 Map

Here are two functions we might want to write:

(** [add1 lst] adds 1 to each element of [lst]. *)
let rec add1 = function
| [] -> []
| h :: t -> (h + 1) :: add1 t

let lst1 = add1 [1; 2; 3]

val add1 : int list -> int list = <fun>

val lst1 : int list = [2; 3; 4]

(** [concat_bang lst] concatenates "!" to each element of [lst]. *)
let rec concat_bang = function
| [] -> []

(continues on next page)
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| h :: t -> (h ^ "!") :: concat_bang t

let lst2 = concat_bang ["sweet"; "salty"]

val concat_bang : string list -> string list = <fun>

val lst2 : string list = ["sweet!"; "salty!"]

There’s a lot of similarity between those two functions:
• They both pattern match against a list.
• They both return the same value for the base case of the empty list.
• They both recurse on the tail in the case of a non-empty list.

In fact the only difference (other than their names) is what they do for the head element: add versus concatenate. Let’s
rewrite the two functions to make that difference even more explicit:

(** [add1 lst] adds 1 to each element of [lst]. *)
let rec add1 = function
| [] -> []
| h :: t ->

let f = fun x -> x + 1 in
f h :: add1 t

(** [concat_bang lst] concatenates "!" to each element of [lst]. *)
let rec concat_bang = function
| [] -> []
| h :: t ->

let f = fun x -> x ^ "!" in
f h :: concat_bang t

val add1 : int list -> int list = <fun>

val concat_bang : string list -> string list = <fun>

Now the only difference between the two functions (again, other than their names) is the body of helper function f. Why
repeat all that code when there’s such a small difference between the functions? We might as well abstract that one helper
function out from each main function and make it an argument:

let rec add1' f = function
| [] -> []
| h :: t -> f h :: add1' f t

(** [add1 lst] adds 1 to each element of [lst]. *)
let add1 = add1' (fun x -> x + 1)

let rec concat_bang' f = function
| [] -> []
| h :: t -> f h :: concat_bang' f t

(** [concat_bang lst] concatenates "!" to each element of [lst]. *)
let concat_bang = concat_bang' (fun x -> x ^ "!")
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val add1' : ('a -> 'b) -> 'a list -> 'b list = <fun>

val add1 : int list -> int list = <fun>

val concat_bang' : ('a -> 'b) -> 'a list -> 'b list = <fun>

val concat_bang : string list -> string list = <fun>

But now there really is no difference at all between add1' and concat_bang' except for their names. They are totally
duplicated code. Even their types are now the same, because nothing about them mentions integers or strings. We might
as well just keep only one of them and come up with a good new name for it. One possibility could be transform,
because they transform a list by applying a function to each element of the list:

let rec transform f = function
| [] -> []
| h :: t -> f h :: transform f t

(** [add1 lst] adds 1 to each element of [lst]. *)
let add1 = transform (fun x -> x + 1)

(** [concat_bang lst] concatenates "!" to each element of [lst]. *)
let concat_bang = transform (fun x -> x ^ "!")

val transform : ('a -> 'b) -> 'a list -> 'b list = <fun>

val add1 : int list -> int list = <fun>

val concat_bang : string list -> string list = <fun>

Note: Instead of

let add1 lst = transform (fun x -> x + 1) lst

above we wrote

let add1 = transform (fun x -> x + 1)

This is another way of being higher order, but it’s one we already learned about under the guise of partial application.
The latter way of writing the function partially applies transform to just one of its two arguments, thus returning a
function. That function is bound to the name add1.

Indeed, the C++ library does call the equivalent function transform. But OCaml and many other languages (including
Java and Python) use the shorter word map, in the mathematical sense of how a function maps an input to an output. So
let’s make one final change to that name:

let rec map f = function
| [] -> []
| h :: t -> f h :: map f t

(continues on next page)
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(** [add1 lst] adds 1 to each element of [lst]. *)
let add1 = map (fun x -> x + 1)

(** [concat_bang lst] concatenates "!" to each element of [lst]. *)
let concat_bang = map (fun x -> x ^ "!")

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

val add1 : int list -> int list = <fun>

val concat_bang : string list -> string list = <fun>

We have now successfully applied the Abstraction Principle: the common structure has been factored out. What’s left
clearly expresses the computation, at least to the reader who is familiar with map, in a way that the original versions do
not as quickly make apparent.

6.2.1 Side Effects

The map function exists already in OCaml’s standard library as List.map, but with one small difference from the
implementation we discovered above. First, let’s see what’s potentially wrong with our own implementation, then we’ll
look at the standard library’s implementation.
We’ve seen before in our discussion of exceptions that the OCaml language specification does not generally specify evalu-
ation order of subexpressions, and that the current language implementation generally evaluates right-to-left. Because of
that, the following (rather contrived) code actually causes the list elements to be printed in what might seem like reverse
order:

let p x = print_int x; print_newline(); x + 1

let lst = map p [1; 2]

val p : int -> int = <fun>

2

1

val lst : int list = [2; 3]

Here’s why:
• Expression map p [1; 2] evaluates to p 1 :: map p [2].
• The right-hand side of that expression is then evaluated to p 1 :: (p 2 :: map p []). The application
of p to 1 has not yet occurred.

• The right-hand side of :: is again evaluated next, yielding p 1 :: (p 2 :: []).
• Then p is applied to 2, and finally to 1.
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That is likely surprising to anyone who is predisposed to thinking that evaluation would occur left-to-right. The solution
is to use a let expression to cause the evaluation of the function application to occur before the recursive call:

let rec map f = function
| [] -> []
| h :: t -> let h' = f h in h' :: map f t

let lst2 = map p [1; 2]

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1

2

val lst2 : int list = [2; 3]

Here’s why that works:
• Expression map p [1; 2] evaluates to let h' = p 1 in h' :: map p [2].
• The binding expression p 1 is evaluated, causing 1 to be printed and h' to be bound to 2.
• The body expression h' :: map p [2] is then evaluated, which leads to 2 being printed next.

So that’s how the standard library defines List.map. We should use it instead of re-defining the function ourselves from
now on. But it’s good that we have discovered the function “from scratch” as it were, and that if needed we could quickly
re-code it.
The bigger lesson to take away from this discussion is that when evaluation order matters, we need to use let to ensure
it. When does it matter? Only when there are side effects. Printing and exceptions are the two we’ve seen so far. Later
we’ll add mutability.

6.2.2 Map and Tail Recursion

Astute readers will have noticed that the implementation of map is not tail recursive. That is to some extent unavoidable.
Here’s a tempting but awful way to create a tail-recursive version of it:

let rec map_tr_aux f acc = function
| [] -> acc
| h :: t -> map_tr_aux f (acc @ [f h]) t

let map_tr f = map_tr_aux f []

let lst = map_tr (fun x -> x + 1) [1; 2; 3]

val map_tr_aux : ('a -> 'b) -> 'b list -> 'a list -> 'b list = <fun>

val map_tr : ('a -> 'b) -> 'a list -> 'b list = <fun>

val lst : int list = [2; 3; 4]
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To some extent that works: the output is correct, and map_tr_aux is tail recursive. The subtle flaw is the subexpression
acc @ [f h]. Recall that append is a linear-time operation on singly-linked lists. That is, if there are 𝑛 list elements
then append takes time 𝑂(𝑛). So at each recursive call we perform a 𝑂(𝑛) operation. And there will be 𝑛 recursive calls,
one for each element of the list. That’s a total of 𝑛 ⋅ 𝑂(𝑛) work, which is 𝑂(𝑛2). So we achieved tail recursion, but at a
high cost: what ought to be a linear-time operation became quadratic time.
In an attempt to fix that, we could use the constant-time cons operation instead of the linear-time append operation:

let rec map_tr_aux f acc = function
| [] -> acc
| h :: t -> map_tr_aux f (f h :: acc) t

let map_tr f = map_tr_aux f []

let lst = map_tr (fun x -> x + 1) [1; 2; 3]

val map_tr_aux : ('a -> 'b) -> 'b list -> 'a list -> 'b list = <fun>

val map_tr : ('a -> 'b) -> 'a list -> 'b list = <fun>

val lst : int list = [4; 3; 2]

And to some extent that works: it’s tail recursive and linear time. The not-so-subtle flaw this time is that the output is
backwards. As we take each element off the front of the input list, we put it on the front of the output list, but that reverses
their order.

Note: To understand why the reversal occurs, it might help to think of the input and output lists as people standing in a
queue:

• Input: Alice, Bob.
• Output: empty.

Then we remove Alice from the input and add her to the output:
• Input: Bob.
• Output: Alice.

Then we remove Bob from the input and add him to the output:
• Input: empty.
• Output: Bob, Alice.

The point is that with singly-linked lists, we can only operate on the head of the list and still be constant time. We can’t
move Bob to the back of the output without making him walk past Alice—and anyone else who might be standing in the
output.

For that reason, the standard library calls this function List.rev_map, that is, a (tail-recursive) map function that
returns its output in reverse order.

let rec rev_map_aux f acc = function
| [] -> acc
| h :: t -> rev_map_aux f (f h :: acc) t

(continues on next page)

6.2. Map 141



OCaml Programming: Correct + Efficient + Beautiful

(continued from previous page)

let rev_map f = rev_map_aux f []

let lst = rev_map (fun x -> x + 1) [1; 2; 3]

val rev_map_aux : ('a -> 'b) -> 'b list -> 'a list -> 'b list = <fun>

val rev_map : ('a -> 'b) -> 'a list -> 'b list = <fun>

val lst : int list = [4; 3; 2]

If you want the output in the “right” order, that’s easy: just apply List.rev to it:

let lst = List.rev (List.rev_map (fun x -> x + 1) [1; 2; 3])

val lst : int list = [2; 3; 4]

Since List.rev is both linear time and tail recursive, that yields a complete solution. We get a linear-time and tail-
recursive map computation. The expense is that it requires two passes through the list: one to transform, the other
to reverse. We’re not going to do better than this efficiency with a singly-linked list. Of course, there are other data
structures that implement lists, and we’ll come to those eventually. Meanwhile, recall that we generally don’t have to
worry about tail recursion (which is to say, about stack space) until lists have 10,000 or more elements.
Why doesn’t the standard library provide this all-in-one function? Maybe it will someday if there’s good enough reason.
But you might discover in your own programming there’s not a lot of need for it. In many cases, we can either do without
the tail recursion, or be content with a reversed list.
The bigger lesson to take away from this discussion is that there can be a tradeoff between time and space efficiency for
recursive functions. By attempting to make a function more space efficient (i.e., tail recursive), we can accidentally make
it asymptotically less time efficient (i.e., quadratic instead of linear), or if we’re clever keep the asymptotic time efficiency
the same (i.e., linear) at the cost of a constant factor (i.e., processing twice).

6.2.3 Map in Other Languages

We mentioned above that the idea of map exists in many programming languages. Here’s an example from Python:

>>> print(list(map(lambda x: x + 1, [1, 2, 3])))
[2, 3, 4]

We have to use the list function to convert the result of the map back to a list, because Python for sake of efficiency
produces each element of the map output as needed. Here again we see the theme of “when does it get evaluated?”
returning.
In Java, map is part of the Stream abstraction that was added in Java 8. Since there isn’t a built-in Java syntax for lists
or streams, it’s a little more verbose to give an example. Here we use a factory method Stream.of to create a stream:

jshell> Stream.of(1, 2, 3).map(x -> x + 1).collect(Collectors.toList())
$1 ==> [2, 3, 4]

Like in the Python example, we have to use something to convert the stream back into a list. In this case it’s the collect
method.
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6.3 Filter

Suppose we wanted to filter out only the even numbers from a list, or the odd numbers. Here are some functions to do
that:

(** [even n] is whether [n] is even. *)
let even n =
n mod 2 = 0

(** [evens lst] is the sublist of [lst] containing only even numbers. *)
let rec evens = function
| [] -> []
| h :: t -> if even h then h :: evens t else evens t

let lst1 = evens [1; 2; 3; 4]

val even : int -> bool = <fun>

val evens : int list -> int list = <fun>

val lst1 : int list = [2; 4]

(** [odd n] is whether [n] is odd. *)
let odd n =
n mod 2 <> 0

(** [odds lst] is the sublist of [lst] containing only odd numbers. *)
let rec odds = function
| [] -> []
| h :: t -> if odd h then h :: odds t else odds t

let lst2 = odds [1; 2; 3; 4]

val odd : int -> bool = <fun>

val odds : int list -> int list = <fun>

val lst2 : int list = [1; 3]

Functions evens and odds are nearly the same code: the only essential difference is the test they apply to the head
element. So as we did with map in the previous section, let’s factor out that test as a function. Let’s name the function p
as short for “predicate”, which is a fancy way of saying that it tests whether something is true or false:

let rec filter p = function
| [] -> []
| h :: t -> if p h then h :: filter p t else filter p t

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

And now we can reimplement our original two functions:
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let evens = filter even
let odds = filter odd

val evens : int list -> int list = <fun>

val odds : int list -> int list = <fun>

How simple these are! How clear! (At least to the reader who is familiar with filter.)

6.3.1 Filter and Tail Recursion

As we did with map, we can create a tail-recursive version of filter:

let rec filter_aux p acc = function
| [] -> acc
| h :: t -> if p h then filter_aux p (h :: acc) t else filter_aux p acc t

let filter p = filter_aux p []

let lst = filter even [1; 2; 3; 4]

val filter_aux : ('a -> bool) -> 'a list -> 'a list -> 'a list = <fun>

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

val lst : int list = [4; 2]

And again we discover the output is backwards. Here, the standard library makes a different choice than it did with map.
It builds in the reversal to List.filter, which is implemented like this:

let rec filter_aux p acc = function
| [] -> List.rev acc (* note the built-in reversal *)
| h :: t -> if p h then filter_aux p (h :: acc) t else filter_aux p acc t

let filter p = filter_aux p []

val filter_aux : ('a -> bool) -> 'a list -> 'a list -> 'a list = <fun>

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

Why does the standard library treat map and filter differently on this point? Good question. Perhaps there has simply
never been a demand for a filter function whose time efficiency is a constant factor better. Or perhaps it is just
historical accident.
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6.3.2 Filter in Other Languages

Again, the idea of filter exists in many programming languages. Here it is in Python:

>>> print(list(filter(lambda x: x % 2 == 0, [1, 2, 3, 4])))
[2, 4]

And in Java:

jshell> Stream.of(1, 2, 3, 4).filter(x -> x % 2 == 0).collect(Collectors.toList())
$1 ==> [2, 4]

6.4 Fold

The map function gives us a way to individually transform each element of a list. The filter function gives us a way to
individually decide whether to keep or throw away each element of a list. But both of those are really just looking at a
single element at a time. What if we wanted to somehow combine all the elements of a list? That’s what the fold function
is for. It turns out that there are two versions of it, which we’ll study in this section. But to start, let’s look at a related
function—not actually in the standard library—that we call combine.

6.4.1 Combine

Once more, let’s write two functions:

(** [sum lst] is the sum of all the elements of [lst]. *)
let rec sum = function
| [] -> 0
| h :: t -> h + sum t

let s = sum [1; 2; 3]

val sum : int list -> int = <fun>

val s : int = 6

(** [concat lst] is the concatenation of all the elements of [lst]. *)
let rec concat = function
| [] -> ""
| h :: t -> h ^ concat t

let c = concat ["a"; "b"; "c"]

val concat : string list -> string = <fun>

val c : string = "abc"

As when we went through similar exercises with map and filter, the functions share a great deal of common structure.
The differences here are:
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• the case for the empty list returns a different initial value, 0 vs ""
• the case of a non-empty list uses a different operator to combine the head element with the result of the recursive
call, + vs ^.

So can we apply the Abstraction Principle again? Sure! But this time we need to factor out two arguments: one for each
of those two differences.
To start, let’s factor out only the initial value:

let rec sum' init = function
| [] -> init
| h :: t -> h + sum' init t

let sum = sum' 0

let rec concat' init = function
| [] -> init
| h :: t -> h ^ concat' init t

let concat = concat' ""

val sum' : int -> int list -> int = <fun>

val sum : int list -> int = <fun>

val concat' : string -> string list -> string = <fun>

val concat : string list -> string = <fun>

Now the only real difference left between sum' and concat' is the operator used to combine the head with the recursive
call on the tail. That operator can also become an argument to a unified function we call combine:

let rec combine op init = function
| [] -> init
| h :: t -> op h (combine op init t)

let sum = combine ( + ) 0
let concat = combine ( ^ ) ""

val combine : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b = <fun>

val sum : int list -> int = <fun>

val concat : string list -> string = <fun>

One way to think of combine would be that:
• the [] value in the list gets replaced by init, and
• each :: constructor gets replaced by op.

For example, [a; b; c] is just syntactic sugar for a :: (b :: (c :: [])). So if we replace [] with 0 and
:: with (+), we get a + (b + (c + 0)). And that would be the sum of the list.
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Once more, the Abstraction Principle has led us to an amazingly simple and succinct expression of the computation.

6.4.2 Fold Right

The combine function is the idea underlying an actual OCaml library function. To get there, we need to make a couple
of changes to the implementation we have so far.
First, let’s rename some of the arguments: we’ll change op to f to emphasize that really we could pass in any function,
not just a built-in operator like +. And we’ll change init to acc, which as usual stands for “accumulator”. That yields:

let rec combine f acc = function
| [] -> acc
| h :: t -> f h (combine f acc t)

val combine : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b = <fun>

Second, let’s make an admittedly less well-motivated change. We’ll swap the implicit list argument to combine with the
init argument:

let rec combine' f lst acc = match lst with
| [] -> acc
| h :: t -> f h (combine' f t acc)

let sum lst = combine' ( + ) lst 0
let concat lst = combine' ( ^ ) lst ""

val combine' : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

val sum : int list -> int = <fun>

val concat : string list -> string = <fun>

It’s a little less convenient to code the function this way, because we no longer get to take advantage of the function
keyword, nor of partial application in defining sum and concat. But there’s no algorithmic change.
What we now have is the actual implementation of the standard library function List.fold_right. All we have left
to do is change the function name and add a manual type annotation:

let rec fold_right f lst (acc : 'acc) = match lst with
| [] -> acc
| h :: t -> f h (fold_right f t acc)

val fold_right : ('a -> 'acc -> 'acc) -> 'a list -> 'acc -> 'acc = <fun>

Why is this function called “fold right”? The intuition is that the way it works is to “fold in” elements of the list from
the right to the left, combining each new element using the operator. For example, fold_right ( + ) [a; b;
c] 0 results in evaluation of the expression a + (b + (c + 0)). The parentheses associate from the right-most
subexpression to the left.

Tip: The manual type annotation is not necessary for a correct implementation of the function. Its purpose is to provide
a nicer type. Without the annotation, the inferred type of fold_right would be ('a -> 'b -> 'b) -> 'a
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list -> 'b -> 'b, in which the compiler chooses 'b as the type of the accumulator. By manually annotating that
argument with a self-descriptive name, we get the more readable type ('a -> 'acc -> 'acc) -> 'a list
-> 'acc -> 'acc.

6.4.3 Tail Recursion and Combine

Neither fold_right nor combine are tail recursive: after the recursive call returns, there is still work to be done in
applying the function argument f or op. Let’s go back to combine and rewrite it to be tail recursive. All that requires
is to change the cons branch:

let rec combine_tr f acc = function
| [] -> acc
| h :: t -> combine_tr f (f acc h) t (* only real change *)

val combine_tr : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

(Careful readers will notice that the type of combine_tr is different than the type of combine. We will address that
soon.)
Now the function f is applied to the head element h and the accumulator acc before the recursive call is made, thus
ensuring there’s no work remaining to be done after the call returns. If that seems a little mysterious, here’s a rewriting
of the two functions that might help:

let rec combine f acc = function
| [] -> acc
| h :: t ->

let acc' = combine f acc t in
f h acc'

let rec combine_tr f acc = function
| [] -> acc
| h :: t ->

let acc' = f acc h in
combine_tr f acc' t

val combine : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b = <fun>

val combine_tr : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

Pay close attention to the definition of acc', the new accumulator, in each of those versions:
• In the original version, we procrastinate using the head element h. First, we combine all the remaining tail elements
to get acc'. Only then do we use f to fold in the head. So the value passed as the initial value of acc turns out
to be the same for every recursive invocation of combine: it’s passed all the way down to where it’s needed, at
the right-most element of the list, then used there exactly once.

• But in the tail recursive version, we “pre-crastinate” by immediately folding h in with the old accumulator acc.
Then we fold that in with all the tail elements. So at each recursive invocation, the value passed as the argument
acc can be different.

The tail recursive version of combine works just fine for summation (and concatenation, which we elide):
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let sum = combine_tr ( + ) 0
let s = sum [1; 2; 3]

val sum : int list -> int = <fun>

val s : int = 6

But something possibly surprising happens with subtraction:

let sub = combine ( - ) 0
let s = sub [3; 2; 1]

let sub_tr = combine_tr ( - ) 0
let s' = sub_tr [3; 2; 1]

val sub : int list -> int = <fun>

val s : int = 2

val sub_tr : int list -> int = <fun>

val s' : int = -6

The two results are different!
• With combine we compute 3 - (2 - (1 - 0)). First we fold in 1, then 2, then 3. We are processing the
list from right to left, putting the initial accumulator at the far right.

• But with combine_tr we compute (((0 - 3) - 2) - 1). We are processing the list from left to right,
putting the initial accumulator at the far left.

With addition it didn’t matter which order we processed the list, because addition is associative and commutative. But
subtraction is not, so the two directions result in different answers.
Actually this shouldn’t be too surprising if we think back to when we made map be tail recursive. Then, we discovered
that tail recursion can cause us to process the list in reverse order from the non-tail recursive version of the same function.
That’s what happened here.

6.4.4 Fold Left

Our combine_tr function is also in the standard library under the name List.fold_left:

let rec fold_left f (acc : 'acc) = function
| [] -> acc
| h :: t -> fold_left f (f acc h) t

let sum = fold_left ( + ) 0
let concat = fold_left ( ^ ) ""

val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> 'a list -> 'acc = <fun>
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val sum : int list -> int = <fun>

val concat : string list -> string = <fun>

We have once more succeeded in applying the Abstraction Principle.

6.4.5 Fold Left vs. Fold Right

Let’s review the differences between fold_right and fold_left:
• They combine list elements in opposite orders, as indicated by their names. Function fold_right combines
from the right to the left, whereas fold_left proceeds from the left to the right.

• Function fold_left is tail recursive whereas fold_right is not.
• The types of the functions are different. In fold_X the accumulator argument goes to the X of the list argument.
That is a choice made by the standard library rather than a necessary implementation difference.

If you find it hard to keep track of the argument orders, the ListLabels module in the standard library can help. It
uses labeled arguments to give names to the combining operator (which it calls f) and the initial accumulator value (which
it calls init). Internally, the implementation is actually identical to the List module.

ListLabels.fold_left ~f:(fun x y -> x - y) ~init:0 [1; 2; 3];;

- : int = -6

ListLabels.fold_right ~f:(fun y x -> x - y) ~init:0 [1; 2; 3];;

- : int = -6

Notice how in the two applications of fold above, we are able to write the arguments in a uniform order thanks to their
labels. However, we still have to be careful about which argument to the combining operator is the list element vs. the
accumulator value.

6.4.6 A Digression on Labeled Arguments and Fold

It’s possible to write our own version of the fold functions that would label the arguments to the combining operator, so
we don’t even have to remember their order:

let rec fold_left ~op:(f: acc:'a -> elt:'b -> 'a) ~init:acc lst =
match lst with
| [] -> acc
| h :: t -> fold_left ~op:f ~init:(f ~acc:acc ~elt:h) t

let rec fold_right ~op:(f: elt:'a -> acc:'b -> 'b) lst ~init:acc =
match lst with
| [] -> acc
| h :: t -> f ~elt:h ~acc:(fold_right ~op:f t ~init:acc)

val fold_left : op:(acc:'a -> elt:'b -> 'a) -> init:'a -> 'b list -> 'a =
<fun>
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val fold_right : op:(elt:'a -> acc:'b -> 'b) -> 'a list -> init:'b -> 'b =
<fun>

But those functions aren’t as useful as they might seem:

let s = fold_left ~op:( + ) ~init:0 [1;2;3]

File "[16]", line 1, characters 22-27:
1 | let s = fold_left ~op:( + ) ~init:0 [1;2;3]

^^^^^
Error: This expression has type int -> int -> int

but an expression was expected of type acc:'a -> elt:'b -> 'a

The problem is that the built-in + operator doesn’t have labeled arguments, so we can’t pass it in as the combining operator
to our labeled functions. We’d have to define our own labeled version of it:

let add ~acc ~elt = acc + elt
let s = fold_left ~op:add ~init:0 [1; 2; 3]

But now we have to remember that the ~acc parameter to add will become the left-hand argument to ( + ). That’s
not really much of an improvement over what we had to remember to begin with.

6.4.7 Using Fold to Implement Other Functions

Folding is so powerful that we can write many other list functions in terms of fold_left or fold_right. For
example,

let length lst =
List.fold_left (fun acc _ -> acc + 1) 0 lst

let rev lst =
List.fold_left (fun acc x -> x :: acc) [] lst

let map f lst =
List.fold_right (fun x acc -> f x :: acc) lst []

let filter f lst =
List.fold_right (fun x acc -> if f x then x :: acc else acc) lst []

val length : 'a list -> int = <fun>

val rev : 'a list -> 'a list = <fun>

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

At this point it begins to become debatable whether it’s better to express the computations above using folding or using
the ways we have already seen. Even for an experienced functional programmer, understanding what a fold does can
take longer than reading the naive recursive implementation. If you peruse the source code of the standard library, you’ll
see that none of the List module internally is implemented in terms of folding, which is perhaps one comment on the
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readability of fold. On the other hand, using fold ensures that the programmer doesn’t accidentally program the recursive
traversal incorrectly. And for a data structure that’s more complicated than lists, that robustness might be a win.

6.4.8 Fold vs. Recursive vs. Library

We’ve now seen three different ways for writing functions that manipulate lists:
• directly as a recursive function that pattern matches against the empty list and against cons,
• using fold functions, and
• using other library functions.

Let’s try using each of those ways to solve a problem, so that we can appreciate them better.
Consider writing a function lst_and: bool list -> bool, such that lst_and [a1; ...; an] returns
whether all elements of the list are true. That is, it evaluates the same as a1 && a2 && ... && an. When applied
to an empty list, it evaluates to true.
Here are three possible ways of writing such a function. We give each way a slightly different function name for clarity.

let rec lst_and_rec = function
| [] -> true
| h :: t -> h && lst_and_rec t

let lst_and_fold =
List.fold_left (fun acc elt -> acc && elt) true

let lst_and_lib =
List.for_all (fun x -> x)

val lst_and_rec : bool list -> bool = <fun>

val lst_and_fold : bool list -> bool = <fun>

val lst_and_lib : bool list -> bool = <fun>

The worst-case running time of all three functions is linear in the length of the list. But:
• The first function, lst_and_rec has the advantage that it need not process the entire list. It will immediately
return false the first time they discover a false element in the list.

• The second function, lst_and_fold, will always process every element of the list.
• As for the third function lst_and_lib, according to the documentation of List.for_all, it returns (p
a1) && (p a2) && ... && (p an). So like lst_and_rec it need not process every element.

152 Chapter 6. Higher-Order Programming



OCaml Programming: Correct + Efficient + Beautiful

6.5 Beyond Lists

Functionals like map and fold are not restricted to lists. They make sense for nearly any kind of data collection. For
example, recall this tree representation:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

6.5.1 Map on Trees

This one is easy. All we have to do is apply the function f to the value v at each node:

let rec map_tree f = function
| Leaf -> Leaf
| Node (v, l, r) -> Node (f v, map_tree f l, map_tree f r)

val map_tree : ('a -> 'b) -> 'a tree -> 'b tree = <fun>

6.5.2 Fold on Trees

This one is only a little harder. Let’s develop a fold functional for 'a tree similar to our fold_right over 'a list.
One way to think of List.fold_right would be that the [] value in the list gets replaced by the acc argument, and
each :: constructor gets replaced by an application of the f argument. For example, [a; b; c] is syntactic sugar for
a :: (b :: (c :: [])). So if we replace [] with 0 and :: with ( + ), we get a + (b + (c + 0)).
Along those lines, here’s a way we could rewrite fold_right that will help us think a little more clearly:

type 'a mylist =
| Nil
| Cons of 'a * 'a mylist

let rec fold_mylist f acc = function
| Nil -> acc
| Cons (h, t) -> f h (fold_mylist f acc t)

type 'a mylist = Nil | Cons of 'a * 'a mylist

val fold_mylist : ('a -> 'b -> 'b) -> 'b -> 'a mylist -> 'b = <fun>

The algorithm is the same. All we’ve done is to change the definition of lists to use constructors written with alphabetic
characters instead of punctuation, and to change the argument order of the fold function.
For trees, we’ll want the initial value of acc to replace each Leaf constructor, just like it replaced [] in lists. And
we’ll want each Node constructor to be replaced by the operator. But now the operator will need to be ternary instead of
binary—that is, it will need to take three arguments instead of two—because a tree node has a value, a left child, and a
right child, whereas a list cons had only a head and a tail.
Inspired by those observations, here is the fold function on trees:
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let rec fold_tree f acc = function
| Leaf -> acc
| Node (v, l, r) -> f v (fold_tree f acc l) (fold_tree f acc r)

val fold_tree : ('a -> 'b -> 'b -> 'b) -> 'b -> 'a tree -> 'b = <fun>

If you compare that function to fold_mylist, you’ll note it very nearly identical. There’s just one more recursive call
in the second pattern-matching branch, corresponding to the one more occurrence of 'a tree in the definition of that
type.
We can then use fold_tree to implement some of the tree functions we’ve previously seen:

let size t = fold_tree (fun _ l r -> 1 + l + r) 0 t
let depth t = fold_tree (fun _ l r -> 1 + max l r) 0 t
let preorder t = fold_tree (fun x l r -> [x] @ l @ r) [] t

val size : 'a tree -> int = <fun>

val depth : 'a tree -> int = <fun>

val preorder : 'a tree -> 'a list = <fun>

Why did we pick fold_right and not fold_left for this development? Because fold_left is tail recursive,
which is something we’re never going to achieve on binary trees. Suppose we process the left branch first; then we still
have to process the right branch before we can return. So there will always be work left to do after a recursive call on one
branch. Thus, on trees an equivalent to fold_right is the best which we can hope for.
The technique we used to derive fold_tree works for any OCaml variant type t:

• Write a recursive fold function that takes in one argument for each constructor of t.
• That fold function matches against the constructors, calling itself recursively on any value of type t that it en-
counters.

• Use the appropriate argument of fold to combine the results of all recursive calls as well as all data not of type t
at each constructor.

This technique constructs something called a catamorphism, aka a generalized fold operation. To learn more about cata-
morphisms, take a course on category theory.

6.5.3 Filter on Trees

This one is perhaps the hardest to design. The problem is: if we decide to filter a node, what should we do with its
children?

• We could recurse on the children. If after filtering them only one child remains, we could promote it in place of
its parent. But what if both children remain, or neither? Then we’d somehow have to reshape the tree. Without
knowing more about how the tree is intended to be used—that is, what kind of data it represents—we are stuck.

• Instead, we could just eliminate the children entirely. So the decision to filter a node means pruning the entire
subtree rooted at that node.

The latter is easy to implement:
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let rec filter_tree p = function
| Leaf -> Leaf
| Node (v, l, r) ->

if p v then Node (v, filter_tree p l, filter_tree p r) else Leaf

val filter_tree : ('a -> bool) -> 'a tree -> 'a tree = <fun>

6.6 Pipelining

Suppose we wanted to compute the sum of squares of the numbers from 0 up to 𝑛. How might we go about it? Of course
(math being the best form of optimization), the most efficient way would be a closed-form formula:

𝑛(𝑛 + 1)(2𝑛 + 1)
6

But let’s imagine you’ve forgotten that formula. In an imperative language you might use a for loop:

# Python
def sum_sq(n):

sum = 0
for i in range(0, n+1):

sum += i * i
return sum

The equivalent (tail) recursive code in OCaml would be:

let sum_sq n =
let rec loop i sum =

if i > n then sum
else loop (i + 1) (sum + i * i)

in loop 0 0

val sum_sq : int -> int = <fun>

Another, clearer way of producing the same result in OCaml uses higher-order functions and the pipeline operator:

let rec ( -- ) i j = if i > j then [] else i :: i + 1 -- j
let square x = x * x
let sum = List.fold_left ( + ) 0

let sum_sq n =
0 -- n (* [0;1;2;...;n] *)
|> List.map square (* [0;1;4;...;n*n] *)
|> sum (* 0+1+4+...+n*n *)

val ( -- ) : int -> int -> int list = <fun>

val square : int -> int = <fun>
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val sum : int list -> int = <fun>

val sum_sq : int -> int = <fun>

The function sum_sq first constructs a list containing all the numbers 0..n. Then it uses the pipeline operator |> to
pass that list through List.map square, which squares every element. Then the resulting list is pipelined through
sum, which adds all the elements together.
The other alternatives that you might consider are somewhat uglier:

(* Maybe worse: a lot of extra [let..in] syntax and unnecessary names
for intermediate values we don't care about. *)

let sum_sq n =
let l = 0 -- n in
let sq_l = List.map square l in
sum sq_l

(* Maybe worse: have to read the function applications from right to left
rather than top to bottom, and extra parentheses. *)

let sum_sq n =
sum (List.map square (0--n))

val sum_sq : int -> int = <fun>

val sum_sq : int -> int = <fun>

The downside of all of these compared to the original tail recursive version is that they are wasteful of space—linear
instead of constant—and take a constant factor more time. So as is so often the case in programming, there is a tradeoff
between clarity and efficiency of code.
Note that the inefficiency is not from the pipeline operator itself, but from having to construct all those unnecessary
intermediate lists. So don’t get the idea that pipelining is intrinsically bad. In fact, it can be quite useful. When we get to
the chapter on modules, we’ll use it quite often with some of the data structures we study there.

6.7 Currying

We’ve already seen that an OCaml function that takes two arguments of types t1 and t2 and returns a value of type t3
has the type t1 -> t2 -> t3. We use two variables after the function name in the let expression:

let add x y = x + y

val add : int -> int -> int = <fun>

Another way to define a function that takes two arguments is to write a function that takes a tuple:

let add' t = fst t + snd t

val add' : int * int -> int = <fun>

Instead of using fst and snd, we could use a tuple pattern in the definition of the function, leading to a third imple-
mentation:
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let add'' (x, y) = x + y

val add'' : int * int -> int = <fun>

Functions written using the first style (with type t1 -> t2 -> t3) are called curried functions, and functions using
the second style (with type t1 * t2 -> t3) are called uncurried. Metaphorically, curried functions are “spicier”
because you can partially apply them (something you can’t do with uncurried functions: you can’t pass in half of a pair).
Actually, the term curry does not refer to spices, but to a logician named Haskell Curry (one of a very small set of people
with programming languages named after both their first and last names).
Sometimes you will come across libraries that offer an uncurried version of a function, but you want a curried version of
it to use in your own code; or vice versa. So it is useful to know how to convert between the two kinds of functions, as
we did with add above.
You could even write a couple of higher-order functions to do the conversion for you:

let curry f x y = f (x, y)
let uncurry f (x, y) = f x y

val curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>

val uncurry : ('a -> 'b -> 'c) -> 'a * 'b -> 'c = <fun>

let uncurried_add = uncurry add
let curried_add = curry add''

val uncurried_add : int * int -> int = <fun>

val curried_add : int -> int -> int = <fun>

6.8 Summary

This chapter is one of the most important in the book. It didn’t cover any new language features. Instead, we learned how
to use some of the existing features in ways that might be new, surprising, or challenging. Higher-order programming and
the Abstraction Principle are two ideas that will help make you a better programmer in any language, not just OCaml. Of
course, languages do vary in the extent to which they support these ideas, with some providing significantly less assistance
in writing higher-order code—which is one reason we use OCaml in this course.
Map, filter, fold and other functionals are becoming widely recognized as excellent ways to structure computation. Part
of the reason for that is they factor out the iteration over a data structure from the computation done at each element.
Languages such as Python, Ruby, and Java 8 now have support for this kind of iteration.
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6.8.1 Terms and Concepts

• Abstraction Principle
• accumulator
• apply
• associative
• compose
• factor
• filter
• first-order function
• fold
• functional
• generalized fold operation
• higher-order function
• map
• pipeline
• pipelining

6.8.2 Further Reading

• Introduction to Objective Caml, chapters 3.1.3, 5.3
• OCaml from the Very Beginning, chapter 6
• More OCaml: Algorithms, Methods, and Diversions, chapter 1, by JohnWhitington. This book is a sequel to OCaml

from the Very Beginning.
• Real World OCaml, chapter 3 (beware that this book’s Core library has a different Listmodule than the standard
library’s List module, with different types for map and fold than those we saw here)

• “Higher Order Functions”, chapter 6 of Functional Programming: Practice and Theory. Bruce J. MacLennan,
Addison-Wesley, 1990. Our discussion of higher-order functions and the Abstraction Principle is indebted to this
chapter.

• “Can Programming be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs.”
John Backus’ 1977 Turing Award lecture in its elaborated form as a published article.

• “Second-order and Higher-order Logic” in The Stanford Encyclopedia of Philosophy.
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6.9 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: twice, no arguments [★]
Consider the following definitions:

let double x = 2 * x
let square x = x * x
let twice f x = f (f x)
let quad = twice double
let fourth = twice square

Use the toplevel to determine what the types of quad and fourth are. Explain how it can be that quad is not syntac-
tically written as a function that takes an argument, and yet its type shows that it is in fact a function.

Exercise: mystery operator 1 [★★]
What does the following operator do?

let ( $ ) f x = f x

Hint: investigate square $ 2 + 2 vs. square 2 + 2.

Exercise: mystery operator 2 [★★]
What does the following operator do?

let ( @@ ) f g x = x |> g |> f

Hint: investigate String.length @@ string_of_int applied to 1, 10, 100, etc.

Exercise: repeat [★★]
Generalize twice to a function repeat, such that repeat f n x applies f to x a total of n times. That is,

• repeat f 0 x yields x
• repeat f 1 x yields f x

• repeat f 2 x yields f (f x) (which is the same as twice f x)
• repeat f 3 x yields f (f (f x))

• …

Exercise: product [★]
Use fold_left to write a function product_left that computes the product of a list of floats. The product of the
empty list is 1.0. Hint: recall how we implemented sum in just one line of code in lecture.
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Use fold_right to write a function product_right that computes the product of a list of floats. Same hint applies.

Exercise: terse product [★★]
How terse can you make your solutions to the product exercise? Hints: you need only one line of code for each, and
you do not need the fun keyword. For fold_left, your function definition does not even need to explicitly take a list
argument. If you use ListLabels, the same is true for fold_right.

Exercise: sum_cube_odd [★★]
Write a function sum_cube_odd n that computes the sum of the cubes of all the odd numbers between 0 and n
inclusive. Do not write any new recursive functions. Instead, use the functionals map, fold, and filter, and the ( -- )
operator (defined in the discussion of pipelining).

Exercise: sum_cube_odd pipeline [★★]
Rewrite the function sum_cube_odd to use the pipeline operator |>.

Exercise: exists [★★]
Consider writing a function exists: ('a -> bool) -> 'a list -> bool, such that exists p [a1;
...; an] returns whether at least one element of the list satisfies the predicate p. That is, it evaluates the same as (p
a1) || (p a2) || ... || (p an). When applied to an empty list, it evaluates to false.
Write three solutions to this problem, as we did above:

• exists_rec, which must be a recursive function that does not use the List module,
• exists_fold, which uses either List.fold_left or List.fold_right, but not any other Listmod-
ule functions nor the rec keyword, and

• exists_lib, which uses any combination of List module functions other than fold_left or
fold_right, and does not use the rec keyword.

Exercise: account balance [★★★]
Write a function which, given a list of numbers representing debits, deducts them from an account balance, and finally
returns the remaining amount in the balance. Write three versions: fold_left, fold_right, and a direct recursive
implementation.

Exercise: library uncurried [★★]
Here is an uncurried version of List.nth:

let uncurried_nth (lst, n) = List.nth lst n

In a similar way, write uncurried versions of these library functions:
• List.append

• Char.compare

• Stdlib.max
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Exercise: map composition [★★★]
Show how to replace any expression of the form List.map f (List.map g lst) with an equivalent expression
that calls List.map only once.

Exercise: more list fun [★★★]
Write functions that perform the following computations. Each function that you write should use one of List.fold,
List.map or List.filter. To choose which of those to use, think about what the computation is doing: combining,
transforming, or filtering elements.

• Find those elements of a list of strings whose length is strictly greater than 3.
• Add 1.0 to every element of a list of floats.
• Given a list of strings strs and another string sep, produce the string that contains every element of strs
separated by sep. For example, given inputs ["hi";"bye"] and ",", produce "hi,bye", being sure not to
produce an extra comma either at the beginning or end of the result string.

Exercise: association list keys [★★★]
Recall that an association list is an implementation of a dictionary in terms of a list of pairs, in which we treat the first
component of each pair as a key and the second component as a value.
Write a function keys: ('a * 'b) list -> 'a list that returns a list of the unique keys in an association
list. Since they must be unique, no value should appear more than once in the output list. The order of values output does
not matter. How compact and efficient can you make your solution? Can you do it in one line and linearithmic space and
time? Hint: List.sort_uniq.

Exercise: valid matrix [★★★]
A mathematical matrix can be represented with lists. In row-major representation, this matrix

[1 1 1
9 8 7]

would be represented as the list [[1; 1; 1]; [9; 8; 7]]. Let’s represent a row vector as an int list. For
example, [9; 8; 7] is a row vector.
A valid matrix is an int list list that has at least one row, at least one column, and in which every column has
the same number of rows. There are many values of type int list list that are invalid, for example,

• []

• [[1; 2]; [3]]

Implement a function is_valid_matrix: int list list -> bool that returns whether the input matrix is
valid. Unit test the function.

Exercise: row vector add [★★★]
Implement a function add_row_vectors: int list -> int list -> int list for the element-wise
addition of two row vectors. For example, the addition of [1; 1; 1] and [9; 8; 7] is [10; 9; 8]. If the two
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vectors do not have the same number of entries, the behavior of your function is unspecified—that is, it may do whatever
you like. Hint: there is an elegant one-line solution using List.map2. Unit test the function.

Exercise: matrix add [★★★]
Implement a function add_matrices: int list list -> int list list -> int list list
for matrix addition. If the two input matrices are not the same size, the behavior is unspecified. Hint: there is an elegant
one-line solution using List.map2 and add_row_vectors. Unit test the function.

Exercise: matrix multiply [★★★★]
Implement a function multiply_matrices: int list list -> int list list -> int list
list for matrix multiplication. If the two input matrices are not of sizes that can be multiplied together, the behavior is
unspecified. Unit test the function. Hint: define functions for matrix transposition and row vector dot product.
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CHAPTER

SEVEN

MODULAR PROGRAMMING

When a program is small enough, we can keep all of the details of the program in our heads at once. But real-world
applications can be many order of magnitude larger than those we write in college classes. They are simply too large
and complex to hold all their details in our heads. They are also written by many programmers. To build large software
systems requires techniques we haven’t talked about so far.
One key solution to managing complexity of large software is modular programming: the code is composed of many
different code modules that are developed separately. This allows different developers to take on discrete pieces of the
system and design and implement them without having to understand all the rest. But to build large programs out of
modules effectively, we need to be able to write modules that we can convince ourselves are correct in isolation from the
rest of the program. Rather than have to think about every other part of the program when developing a code module,
we need to be able to use local reasoning: that is, reasoning about just the module and the contract it needs to satisfy
with respect to the rest of the program. If everyone has done their job, separately developed code modules can be
plugged together to form a working program without every developer needing to understand everything done by every
other developer in the team. This is the key idea of modular programming.
Therefore, to build large programs that work, we must use abstraction to make it manageable to think about the pro-
gram. Abstraction is simply the removal of detail. A well-written program has the property that we can think about its
components (such as functions) abstractly, without concerning ourselves with all the details of how those components are
implemented.
Modules are abstracted by giving specifications of what they are supposed to do. A good module specification is clear,
understandable, and gives just enough information about what the module does for clients to successfully use it. This
abstraction makes the programmer’s job much easier; it is helpful even when there is only one programmer working on a
moderately large program, and it is crucial when there is more than one programmer.
Industrial-strength languages contain mechanisms that support modular programming. In general (i.e., across program-
ming languages), a module specification is known as an interface, which provides information to clients about the module’s
functionality while hiding the implementation. Object-oriented languages support modular programming with classes. The
Java interface construct is one example of a mechanism for specifying the interface to a class. A Java interface
informs clients of the available functionality in any class that implements it without revealing the details of the imple-
mentation. But even just the public methods of a class constitute an interface in the more general sense—an abstract
description of what the module can do.
Developers working with a module take on distinct roles. Most developers are usually clients of the module who under-
stand the interface but do not need to understand the implementation of the module. A developer who works on the
module implementation is naturally called an implementer. The module interface is a contract between the client and the
implementer, defining the responsibilities of both. Contracts are very important because they help us to isolate the source
of the problem when something goes wrong—and to know who to blame!
It is good practice to involve both clients and implementers in the design of a module’s interface. Interfaces designed
solely by one or the other can be seriously deficient. Each side will have its own view of what the final product should
look like, and these may not align! So mutual agreement on the contract is essential. It is also important to think hard
about global module structure and interfaces early, because changing an interface becomes more and more difficult as the
development proceeds and more of the code comes to depend on it.
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Modules should be used only through their declared interfaces, which the language should help to enforce. This is true
even when the client and the implementer are the same person. Modules decouple the system design and implementation
problem into separate tasks that can be carried out largely independently. When amodule is used only through its interface,
the implementer has the flexibility to change the module as long as the module still satisfies its interface.

7.1 Module Systems

A programming language’s module system is the set of features it provides in support of modular programming. Below
are some common concerns of module systems. We focus on Java and OCaml in this discussion, mentioning some of the
most related features in the two languages.
Namespaces. A namespace provides a set of names that are grouped together, are usually logically related, and are
distinct from other namespaces. That enables a name foo in one namespace to have a distinct meaning from foo in
another namespace. A namespace is thus a scoping mechanism. Namespaces are essential for modularity. Without them,
the names that one programmer chooses could collide with the names another programmer chooses. In Java, classes (and
packages) group names. In OCaml, structures (which we will soon study) are similar to classes in that they group names—
but without any of the added complexity of object-oriented programming that usually accompanies classes (constructors,
static vs. instance members, inheritance, overriding, this, etc.) Structures are the core of the OCaml module system;
in fact, we’ve been using them all along without thinking too much about them.
Abstraction. An abstraction hides some information while revealing other information. Abstraction thus enables en-
capsulation, aka information hiding. Usually, abstraction mechanisms for modules allow revealing some names that exist
inside the module, but hiding some others. Abstractions therefore describe relationships among modules: there might be
many modules that could be considered to satisfy a given abstraction. Abstraction is essential for modularity, because it
enables implementers of a module to hide the details of the implementation from clients, thus preventing the clients from
abusing those details. In a large team, the modules one programmer designs are thereby protected from abuse by another
programmer. It also enables clients to be blissfully unaware of those details. So, in a large team, no programmer has to
be aware of all the details of all the modules. In Java, interfaces and abstract classes provide abstraction. In OCaml, sig-
natures are used to abstract structures by hiding some of the structure’s names and definitions. Signatures are essentially
the types of structures.
Code reuse. A module system enables code reuse by providing features that enable code from one module to be used as
part of another module without having to copy that code. Code reuse thereby enables programmers to build on the work
of others in a way that is maintainable: when the implementer of one module makes an improvement in that module, all
the programmers who are reusing that code automatically get the benefit of that improvement. Code reuse is essential
for modularity, because it enables “building blocks” that can be assembled and reassembled to form complex pieces of
software. In Java, subtyping and inheritance provide code reuse. In OCaml, functors and includes enable code reuse.
Functors are like functions, in that they produce new modules out of old modules. Includes are like an intelligent form of
copy-paste: they include code from one part of a program in another.

Warning: These analogies between Java and OCaml are necessarily imperfect. You might naturally come away
from the above discussion thinking either of the following:

• “Structures are like Java classes, and signatures are like interfaces.”
• “Structures are like Java objects, and signatures are like classes.”

Both are helpful to a degree, yet both are ultimately wrong. So it might be best to let go of object-oriented programming
at this point and come to terms with the OCaml module system in and of itself. Compared to Java, it’s just built
different.
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7.2 Modules

We begin with a couple of examples of the OCaml module system before diving into the details.
A structure is simply a collection of definitions, such as:

struct
let inc x = x + 1
type primary_color = Red | Green | Blue
exception Oops

end

In a way, the structure is like a record: the structure has some distinct components with names. But unlike a record, it
can define new types, exceptions, and so forth.
By itself the code above won’t compile, because structures do not have the same first-class status as values like integers
or functions. You can’t just enter that code in utop, or pass that structure to a function, etc. What you can do is bind the
structure to a name:

module MyModule = struct
let inc x = x + 1
type primary_color = Red | Green | Blue
exception Oops

end

module MyModule :
sig

val inc : int -> int
type primary_color = Red | Green | Blue
exception Oops

end

The output from OCaml has the form:

module MyModule : sig ... end

This indicates that MyModule has been defined, and that it has been inferred to have the module type that appears to the
right of the colon. That module type is written as signature:

sig
val inc : int -> int
type primary_color = Red | Green | Blue
exception Oops

end

The signature itself is a collection of specifications. The specifications for variant types and exceptions are simply their
original definitions, so primary_color and Oops are no different than they were in the original structure. The
specification for inc though is written with the val keyword, exactly as the toplevel would respond if we defined inc
in it.

Note: This use of the word “specification” is perhaps confusing, since many programmers would use that word to mean
“the comments specifying the behavior of a function.” But if we broaden our sight a little, we could allow that the type
of a function is part of its specification. So it’s at least a related sense of the word.
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The definitions in a module are usually more closely related than those in MyModule. Often a module will implement
some data structure. For example, here is a module for stacks implemented as linked lists:

module ListStack = struct
(** [empty] is the empty stack. *)
let empty = []

(** [is_empty s] is whether [s] is empty. *)
let is_empty = function [] -> true | _ -> false

(** [push x s] pushes [x] onto the top of [s]. *)
let push x s = x :: s

(** [Empty] is raised when an operation cannot be applied
to an empty stack. *)

exception Empty

(** [peek s] is the top element of [s].
Raises [Empty] if [s] is empty. *)

let peek = function
| [] -> raise Empty
| x :: _ -> x

(** [pop s] is all but the top element of [s].
Raises [Empty] if [s] is empty. *)

let pop = function
| [] -> raise Empty
| _ :: s -> s

end

module ListStack :
sig

val empty : 'a list
val is_empty : 'a list -> bool
val push : 'a -> 'a list -> 'a list
exception Empty
val peek : 'a list -> 'a
val pop : 'a list -> 'a list

end

Important: The specification of popmight surprise you. Note that it does not return the top element. That’s the job of
peek. Instead, pop returns all but the top element.

We can then use that module to manipulate a stack:

ListStack.push 2 (ListStack.push 1 ListStack.empty)

- : int list = [2; 1]

Warning: There’s a common confusion lurking here for those programmers coming from object-oriented languages.
It’s tempting to think of ListStack as being an object on which you invoke methods. Indeed ListStack.push
vaguely looks like we’re invoking a push method on a ListStack object. But that’s not what is happening. In an
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OO language you could instantiate many stack objects. But here, there is only one ListStack. Moreover it is not
an object, in large part because it has no notion of a this or self keyword to denote the receiving object of the
method call.

That’s admittedly rather verbose code. Soon we’ll see several solutions to that problem, but for now here’s one:

ListStack.(push 2 (push 1 empty))

- : int list = [2; 1]

By writing ListStack.(e), all the names from ListStack become usable in e without needing to write the prefix
ListStack. each time. Another improvement could be using the pipeline operator:

ListStack.(empty |> push 1 |> push 2)

- : int list = [2; 1]

Now we can read the code left-to-right without having to parse parentheses. Nice.

Warning: There’s another common OO confusion lurking here. It’s tempting to think of ListStack as being a
class from which objects are instantiated. That’s not the case though. Notice how there is no new operator used to
create a stack above, nor any constructors (in the OO sense of that word).

Modules are considerably more basic than classes. A module is just a collection of definitions in its own namespace. In
ListStack, we have some definitions of functions—push, pop, etc.—and one value, empty.
So whereas in Java we might create a couple of stacks using code like this:

Stack s1 = new Stack();
s1.push(1);
s1.push(2);
Stack s2 = new Stack();
s2.push(3);

In OCaml the same stacks could be created as follows:

let s1 = ListStack.(empty |> push 1 |> push 2)
let s2 = ListStack.(empty |> push 3)

val s1 : int list = [2; 1]

val s2 : int list = [3]
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7.2.1 Module Definitions

The module definition keyword is much like the let definition keyword that we learned before. (The OCaml designers
hypothetically could have chosen to use let_module instead of module to emphasize the similarity.) The difference
is just that:

• let binds a value to a name, whereas
• module binds a module value to a name.

Syntax.
The most common syntax for a module definition is simply:

module ModuleName = struct
module_items

end

where module_items inside a structure can include let definitions, type definitions, and exception definitions,
as well as nested module definitions. Module names must begin with an uppercase letter, and idiomatically they use
CamelCase rather than Snake_case.
But a more accurate version of the syntax would be:

module ModuleName = module_expression

where a struct is just one sort of module_expression. Here’s another: the name of an already defined module.
For example, you can write module L = List if you’d like a short alias for the List module. We’ll see other sorts
of module expressions later in this section and chapter.
The definitions inside a structure can optionally be terminated by ;; as in the toplevel:

module M = struct
let x = 0;;
type t = int;;

end

module M : sig val x : int type t = int end

Sometimes that can be useful to add temporarily if you are trying to diagnose a syntax error. It will help OCaml understand
that you want two definitions to be syntactically separate. After fixing whatever the underlying error is, though, you can
remove the ;;.
One use case for ;; is if you want to evaluate an expression as part of a module:

module M = struct
let x = 0;;
assert (x = 0);;

end

module M : sig val x : int end

But that can be rewritten without ;; as:

module M = struct
let x = 0

(continues on next page)
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(continued from previous page)

let _ = assert (x = 0)
end

module M : sig val x : int end

Structures can also be written on a single line, with optional ;; between items for readability:

module N = struct let x = 0 let y = 1 end
module O = struct let x = 0;; let y = 1 end

module N : sig val x : int val y : int end

module O : sig val x : int val y : int end

An empty structure is permitted:

module E = struct end

module E : sig end

Dynamic semantics.
We already know that expressions are evaluated to values. Similarly, a module expression is evaluated to a module value
or just “module” for short. The only interesting kind of module expression we have so far, from the perspective of
evaluation anyway, is the structure. Evaluation of structures is easy: just evaluate each definition in it, in the order they
occur. Because of that, earlier definitions are therefore in scope in later definitions, but not vice versa. So this module is
fine:

module M = struct
let x = 0
let y = x

end

module M : sig val x : int val y : int end

But this module is not, because at the time the let definition of x is being evaluated, y has not yet been bound:

module M = struct
let x = y
let y = 0

end

File "[13]", line 2, characters 10-11:
2 | let x = y

^
Error: Unbound value y

Of course, mutual recursion can be used if desired:
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module M = struct
(* Requires: input is non-negative. *)
let rec even = function

| 0 -> true
| n -> odd (n - 1)

and odd = function
| 0 -> false
| n -> even (n - 1)

end

module M : sig val even : int -> bool val odd : int -> bool end

Static semantics.
A structure is well-typed if all the definitions in it are themselves well-typed, according to all the typing rules we have
already learned.
As we’ve seen in toplevel output, the module type of a structure is a signature. There’s more to module types than that,
though. Let’s put that off for a moment to first talk about scope.

7.2.2 Scope and Open

After a module M has been defined, you can access the names within it using the dot operator. For example:

module M = struct let x = 42 end

module M : sig val x : int end

M.x

- : int = 42

Of course from outside the module the name x by itself is not meaningful:

x

File "[17]", line 1, characters 0-1:
1 | x

^
Error: Unbound value x

But you can bring all of the definitions of a module into the current scope using open:

open M

x

- : int = 42
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Opening a module is like writing a local definition for each name defined in the module. For example, open String
brings all the definitions from the String module into scope, and has an effect similar to the following on the local names-
pace:

let length = String.length
let get = String.get
let lowercase_ascii = String.lowercase_ascii
...

If there are types, exceptions, or modules defined in a module, those also are brought into scope with open.
The Always-Open Module. There is a special module called Stdlib that is automatically opened in every OCaml
program. It contains the “built-in” functions and operators. You therefore never need to prefix any of the names it defines
with Stdlib., though you could do so if you ever needed to unambiguously identify a name from it. In earlier days,
this module was named Pervasives, and you might still see that name in some code bases.
Open as a Module Item. An open is another sort of module_item. So we can open one module inside another:

module M = struct
open List

(** [uppercase_all lst] upper-cases all the elements of [lst]. *)
let uppercase_all = map String.uppercase_ascii

end

module M : sig val uppercase_all : string list -> string list end

Since List is open, the name map from it is in scope. But what if we wanted to get rid of the String. as well?

module M = struct
open List
open String

(** [uppercase_all lst] upper-cases all the elements of [lst]. *)
let uppercase_all = map uppercase_ascii

end

File "[21]", line 6, characters 26-41:
6 | let uppercase_all = map uppercase_ascii

^^^^^^^^^^^^^^^
Error: This expression has type string -> string

but an expression was expected of type char -> char
Type string is not compatible with type char

Now we have a problem, because String also defines the name map, but with a different type than List. As usual a
later definition shadows an earlier one, so it’s String.map that gets chosen instead of List.map as we intended.
If you’re using many modules inside your code, chances are you’ll have at least one collision like this. Often it will be
with a standard higher-order function like map that is defined in many library modules.

Tip: It is therefore generally good practice not to open all the modules you’re going to use at the top of a .ml file or
structure. This is perhaps different than how you’re used to working with languages like Java, where you might import
many packages with *. Instead, it’s good to restrict the scope in which you open modules.
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Limiting the Scope of Open. We’ve already seen one way of limiting the scope of an open: M.(e). Inside e all the
names from module M are in scope. This is useful for briefly using M in a short expression:

(* remove surrounding whitespace from [s] and convert it to lower case *)
let s = "BigRed "
let s' = s |> String.trim |> String.lowercase_ascii (* long way *)
let s'' = String.(s |> trim |> lowercase_ascii) (* short way *)

val s : string = "BigRed "

val s' : string = "bigred"

But what if you want to bring a module into scope for an entire function, or some other large block of code? The
(admittedly strange) syntax for that is let open M in e. It makes all the names from M be in scope in e. For
example:

(** [lower_trim s] is [s] in lower case with whitespace removed. *)
let lower_trim s =
let open String in
s |> trim |> lowercase_ascii

val lower_trim : string -> string = <fun>

Going back to our uppercase_all example, it might be best to eschew any kind of opening and simply to be explicit
about which module we are using where:

module M = struct
(** [uppercase_all lst] upper-cases all the elements of [lst]. *)
let uppercase_all = List.map String.uppercase_ascii

end

module M : sig val uppercase_all : string list -> string list end

7.2.3 Module Type Definitions

We’ve already seen that OCaml will infer a signature as the type of a module. Let’s now see how to write those modules
types ourselves. As an example, here is a module type for our list-based stacks:

module type LIST_STACK = sig
exception Empty
val empty : 'a list
val is_empty : 'a list -> bool
val push : 'a -> 'a list -> 'a list
val peek : 'a list -> 'a
val pop : 'a list -> 'a list

end

module type LIST_STACK =
sig

exception Empty

(continues on next page)
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(continued from previous page)

val empty : 'a list
val is_empty : 'a list -> bool
val push : 'a -> 'a list -> 'a list
val peek : 'a list -> 'a
val pop : 'a list -> 'a list

end

Now that we have both a module and a module type for list-based stacks, we should move the specification comments
from the structure into the signature. Those comments are properly part of the specification of the names in the signature.
They specify behavior, thus augmenting the specification of types provided by the val declarations.

module type LIST_STACK = sig
(** [Empty] is raised when an operation cannot be applied

to an empty stack. *)
exception Empty

(** [empty] is the empty stack. *)
val empty : 'a list

(** [is_empty s] is whether [s] is empty. *)
val is_empty : 'a list -> bool

(** [push x s] pushes [x] onto the top of [s]. *)
val push : 'a -> 'a list -> 'a list

(** [peek s] is the top element of [s].
Raises [Empty] if [s] is empty. *)

val peek : 'a list -> 'a

(** [pop s] is all but the top element of [s].
Raises [Empty] if [s] is empty. *)

val pop : 'a list -> 'a list
end

module ListStack = struct
let empty = []

let is_empty = function [] -> true | _ -> false

let push x s = x :: s

exception Empty

let peek = function
| [] -> raise Empty
| x :: _ -> x

let pop = function
| [] -> raise Empty
| _ :: s -> s

end

Nothing so far, however, tells OCaml that there is a relationship between LIST_STACK and ListStack. If we want
OCaml to ensure that ListStack really does have the module type specified by LIST_STACK, we can add a type
annotation in the first line of the module definition:
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module ListStack : LIST_STACK = struct
let empty = []

let is_empty = function [] -> true | _ -> false

let push x s = x :: s

exception Empty

let peek = function
| [] -> raise Empty
| x :: _ -> x

let pop = function
| [] -> raise Empty
| _ :: s -> s

end

module ListStack : LIST_STACK

The compiler agrees that the module ListStack does define all the items specified by LIST_STACK with appropriate
types. If we had accidentally omitted some item, the type annotation would have been rejected:

module ListStack : LIST_STACK = struct
let empty = []

let is_empty = function [] -> true | _ -> false

let push x s = x :: s

exception Empty

let peek = function
| [] -> raise Empty
| x :: _ -> x

(* [pop] is missing *)
end

File "[28]", lines 1-15, characters 32-3:
1 | ................................struct
2 | let empty = []
3 |
4 | let is_empty = function [] -> true | _ -> false
5 |

...
12 | | x :: _ -> x
13 |
14 | (* [pop] is missing *)
15 | end
Error: Signature mismatch:

...
The value `pop' is required but not provided
File "[26]", line 21, characters 2-30: Expected declaration

Syntax.
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The most common syntax for a module type is simply:

module type ModuleTypeName = sig
specifications

end

where specifications inside a signature can include val declarations, type definitions, exception definitions, and
nested module type definitions. Like structures, a signature can be written on many lines or just one line, and the
empty signature sig end is allowed.
But, as we saw with module definitions, a more accurate version of the syntax would be:

module type ModuleTypeName = module_type

where a signature is just one sort of module_type. Another would be the name of an already defined module type—
e.g., module type LS = LIST_STACK. We’ll see other module types later in this section and chapter.
By convention, module type names are usually CamelCase, like module names. So why did we use ALL_CAPS above
for LIST_STACK? It was to avoid a possible point of confusion in that example, which we now illustrate. We could
instead have used ListStack as the name of both the module and the module type:

module type ListStack = sig ... end
module ListStack : ListStack = struct ... end

In OCaml the namespaces for modules and module types are distinct, so it’s perfectly valid to have a module named
ListStack and a module type named ListStack. The compiler will not get confused about which you mean, be-
cause they occur in distinct syntactic contexts. But as a human you might well get confused by those seemingly overloaded
names.

Note: The use of ALL_CAPS for module types was at one point common, and you might see it still. It’s an older
convention from Standard ML. But the social conventions of all caps have changed since those days. To modern readers,
a name like LIST_STACK might feel like your code is impolitely shouting at you. That is a connotation that evolved in
the 1980s. Older programming languages (e.g., Pascal, COBOL, FORTRAN) commonly used all caps for keywords and
even their own names. Modern languages still idiomatically use all caps for constants—see, for example, Java’s Math.PI
or Python’s style guide.

More Syntax.
We should also add syntax now for module type annotations. Module definitions may include an optional type annotation:

module ModuleName : module_type = module_expression

And module expressions may include manual type annotations:

(module_expression : module_type)

That syntax is analogous to how we can write (e : t) to manually specify the type t of an expression e.
Here are a few examples to show how that syntax can be used:

module ListStackAlias : LIST_STACK = ListStack
(* equivalently *)
module ListStackAlias = (ListStack : LIST_STACK)

(continues on next page)
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(continued from previous page)

module M : sig val x : int end = struct let x = 42 end
(* equivalently *)
module M = (struct let x = 42 end : sig val x : int end)

And, module types can include nested module specifications:

module type X = sig
val x : int

end

module type T = sig
module Inner : X

end

module M : T = struct
module Inner : X = struct

let x = 42
end

end

In the example above, T specifies that there must be an inner module named Inner whose module type is X. Here, the
type annotation is mandatory, because otherwise nothing would be known about Inner. In implementing T, module M
therefore has to provide a module (i) with that name, which also (ii) meets the specifications of module type X.
Dynamic semantics.
Since module types are in fact types, they are not evaluated. They have no dynamic semantics.
Static semantics.
Earlier in this section we delayed discussing the static semantics of module expressions. Now that we have learned about
module types, we can return to that discussion. We do so, next, in its own section, because the discussion will be lengthy.

7.2.4 Module Type Semantics

If M is just a struct block, its module type is whatever signature the compiler infers for it. But that can be changed by
module type annotations. The key question we have to answer is: what does a type annotation mean for modules? That
is, what does it mean when we write the : T in module M : T = ...?
There are two properties the compiler guarantees:

1. Signature matching: every name declared in T is defined in M at the same or a more general type.
2. Opacity: any name defined in M that does not appear in T is not visible to code outside of M.

But a more complete answer turns out to involve subtyping, which is a concept you’ve probably seen before in an object-
oriented language. We’re going to take a brief detour into that realm now, then come back to OCaml and modules.
In Java, the extends keyword creates subtype relationships between classes:

class C { }
class D extends C { }

D d = new D();
C c = d;
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Subtyping is what permits the assignment of d to c on the last line of that example. Because D extends C, Java considers D
to be a subtype of C, and therefore permits an object instantiated from D to be used any place where an object instantiated
from C is expected. It’s up to the programmer of D to ensure that doesn’t lead to any run-time errors, of course. The
methods of D have to ensure that class invariants of C hold, for example. So by writing D extends C, the programmer
is taking on some responsibility, and in turn gaining some flexibility by being able to write such assignment statements.
So what is a “subtype”? That notion is in many ways dependent on the language. For a language-independent notion,
we turn to Barbara Liskov. She won the Turing Award in 2008 in part for her work on object-oriented language design.
Twenty years before that, she invented what is now called the Liskov Substitution Principle to explain subtyping. It says
that if S is a subtype of T, then substituting an object of type S for an object of type T should not change any desirable
behaviors of a program. You can see that at work in the Java example above, both in terms of what the language allows
and what the programmer must guarantee.
The particular flavor of subtyping in Java is called nominal subtyping, which is to say, it is based on names. In our example,
D is a subtype of C just because of the way the names were declared. The programmer decreed that subtype relationship,
and the language accepted the decree without question. Indeed, the only subtype relationships that exist are those that
have been decreed by name through such uses of extends and implements.
Now it’s time to return to OCaml. Its module system also uses subtyping, with the same underlying intuition about the
Liskov Substitution Principle. But OCaml uses a different flavor called structural subtyping. That is, it is based on the
structure of modules rather than their names. “Structure” here simply means the definitions contained in the module.
Those definitions are used to determine whether (M : T) is acceptable as a type annotation, where M is a module and
T is a module type.
Let’s play with this idea of structure through several examples, starting with this module:

module M = struct
let x = 0
let z = 2

end

module M : sig val x : int val z : int end

Module M contains two definitions. You can see those in the signature for the module that OCaml outputs: it contains x
: int and z : int. Because of the former, the module type annotation below is accepted:

module type X = sig
val x : int

end

module MX = (M : X)

module type X = sig val x : int end

module MX : X

Module type X requires a module item named x with type int. Module M does contain such an item. So (M : X) is
valid. The same would work for z:

module type Z = sig
val z : int

end

module MZ = (M : Z)

7.2. Modules 177



OCaml Programming: Correct + Efficient + Beautiful

module type Z = sig val z : int end

module MZ : Z

Or for both x and z:

module type XZ = sig
val x : int
val z : int

end

module MXZ = (M : XZ)

module type XZ = sig val x : int val z : int end

module MXZ : XZ

But not for y, because M contains no such item:

module type Y = sig
val y : int

end

module MY = (M : Y)

module type Y = sig val y : int end

File "[35]", line 5, characters 13-14:
5 | module MY = (M : Y)

^
Error: Signature mismatch:

Modules do not match:
sig val x : int val z : int end

is not included in
Y

The value `y' is required but not provided
File "[35]", line 2, characters 2-13: Expected declaration

Take a close look at that error message. Learning to read such errors on small examples will help you when they appear
in large bodies of code. OCaml is comparing two signatures, corresponding to the two expressions on either side of the
colon in (M : Y). The line

sig val x : int val z : int end

is the signature that OCaml is using for M. Since M is a module, that signature is just the names and types as they were
defined in M. OCaml compares that signature to Y, and discovers a mismatch:

The value `y' is required but not provided

That’s because Y requires y but M provides no such definition.
Here’s another error message to practice reading:
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module type Xstring = sig
val x : string

end

module MXstring = (M : Xstring)

module type Xstring = sig val x : string end

File "[36]", line 5, characters 19-20:
5 | module MXstring = (M : Xstring)

^
Error: Signature mismatch:

Modules do not match:
sig val x : int val z : int end

is not included in
Xstring

Values do not match: val x : int is not included in val x : string
The type int is not compatible with the type string
File "[36]", line 2, characters 2-16: Expected declaration
File "[31]", line 2, characters 6-7: Actual declaration

This time the error is

Values do not match: val x : int is not included in val x : string

The error changed, because M does provide a definition of x, but at a different type than Xstring requires. That’s what
“is not included in” means here. So why doesn’t OCaml say something a little more straightforward, like “is not the same
as”? It’s because the types do not have to be exactly the same. If the provided value’s type is polymorphic, it suffices for
the required value’s type to be an instantiation of that polymorphic type.
For example, if a signature requires a type int -> int, it suffices for a structure to provide a value of type 'a ->
'a:

module type IntFun = sig
val f : int -> int

end

module IdFun = struct
let f x = x

end

module Iid = (IdFun : IntFun)

module type IntFun = sig val f : int -> int end

module IdFun : sig val f : 'a -> 'a end

module Iid : IntFun

So far all these examples were just a matter of comparing the definitions required by a signature to the definitions provided
by a structure. But here’s an example that might be surprising:
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module MXZ' = ((M : X) : Z)

File "[38]", line 1, characters 15-22:
1 | module MXZ' = ((M : X) : Z)

^^^^^^^
Error: Signature mismatch:

Modules do not match: X is not included in Z
The value `z' is required but not provided
File "[33]", line 2, characters 2-13: Expected declaration

Why does OCaml complain that z is required but not provided? We know from the definition of M that it indeed does
have a value z : int. Yet the error message perhaps strangely claims:

The value `z' is required but not provided.

The reason for this error is that we’ve already supplied the type annotation X in the module expression (M : X). That
causes the module expression to be known only at the module type X. In other words, we’ve forgotten irrevocably about
the existence of z after that annotation. All that is known is that the module has items required by X.
After all those examples, here are the static semantics of module type annotations:

• Module type annotation (M : T) is valid if the module type of M is a subtype of T. The module type of (M :
T) is then T in any further type checking.

• Module type S is a subtype of T if the set of definitions in S is a superset of those in T. Definitions in T are permitted
to instantiate type variables from S.

The “sub” vs. “super” in the second rule is not a typo. Consider these module types and modules:

module type T = sig
val a : int

end

module type S = sig
val a : int
val b : bool

end

module A = struct
let a = 0

end

module AB = struct
let a = 0
let b = true

end

module AC = struct
let a = 0
let c = 'c'

end

module type T = sig val a : int end

module type S = sig val a : int val b : bool end
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module A : sig val a : int end

module AB : sig val a : int val b : bool end

module AC : sig val a : int val c : char end

Module type S provides a superset of the definitions in T, because it adds a definition of b. So why is S called a subtype
of T? Think about the set Type(𝑇 ) of all module values M such that M : T. That set contains A, AB, AC, and many
others. Also think about the set Type(𝑆) of all module values M such that M : S. That set contains AB but not A nor
AC. So Type(𝑆) ⊂ Type(𝑇 ), because there are some module values that are in Type(𝑇 ) but not in Type(𝑆).
As another example, a module type StackHistory for stacks might customize our usual Stack signature by adding
an operation history : 'a t -> int to return how many items have ever been pushed on the stack in its history.
That history operation makes the set of definitions in StackHistory bigger than the set in Stack, hence the use
of “superset” in the rule above. But the set of module values that implement StackHistory is smaller than the set of
module values that implement Stack, hence the use of “subset”.

7.2.5 Module Types are Static

Decisions about validity of module type annotations are made at compile time rather than run time.

Important: Module type annotations therefore offer potential confusion to programmers accustomed to object-oriented
languages, in which subtyping works differently.

Python programmers, for example, are accustomed to so-called “duck typing”. They might expect ((M : X) : Z)
to be valid, because z does exist at run-time in M. But in OCaml, the compile-time type of (M : X) has hidden z from
view irrevocably.
Java programmers, on the other hand, might expect that module type annotations work like type casts. So it might seem
valid to first “cast” M to X then to Z. In Java such type casts are checked, as needed, at run time. But OCaml module type
annotations are static. Once an annotation of X is made, there is no way to check at compile time what other items might
exist in the module—that would require a run-time check, which OCaml does not permit.
In both cases it might feel as though OCaml is being too restrictive. Maybe. But in return for that restrictiveness, OCaml
is guaranteeing an absence of run-time errors of the kind that would occur in Java or Python, whether because of a
run-time error from a cast, or a run-time error from a missing method.

7.2.6 First-Class Modules

Modules are not as first-class in OCaml as functions. But it is possible to package modules as first-class values. Briefly:
• (module M : T) packages module M with module type T into a value.
• (val e : T) un-packages e into a module with type T.

We won’t cover this much further, but if you’re curious you can have a look at the manual.
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7.3 Modules and the Toplevel

Note: The video below uses the legacy build system, ocamlbuild, rather than the new build system, dune. Some of the
details change with dune, as described in the text below.

There are several pragmatics involving modules and the toplevel that are important to master to use the two together
effectively.

7.3.1 Loading Compiled Modules

Compiling an OCaml file produces a module having the same name as the file, but with the first letter capitalized. These
compiled modules can be loaded into the toplevel using #load.
For example, suppose you create a file called mods.ml, and put the following code in it:

let b = "bigred"
let inc x = x + 1
module M = struct

let y = 42
end

Note that there is no module Mods = struct ... end around that. The code is at the topmost level of the file,
as it were.
Then suppose you type ocamlc mods.ml to compile it. One of the newly-created files is mods.cmo: this is a
compiled module object file, aka bytecode.
You can make this bytecode available for use in the toplevel with the following directives. Recall that the # character is
required in front of a directive. It is not part of the prompt.

# #load "mods.cmo";;

That directive loads the bytecode found in mods.cmo, thus making a module named Mods available to be used. It is
exactly as if you had entered this code:

module Mods = struct
let b = "bigred"
let inc x = x + 1
module M = struct

let y = 42
end

end

module Mods :
sig val b : string val inc : int -> int module M : sig val y : int end end

Both of these expressions will therefore evaluate successfully:

Mods.b;;
Mods.M.y;;
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- : string = "bigred"

- : int = 42

But this will fail:

inc

File "[3]", line 1, characters 0-3:
1 | inc

^^^
Error: Unbound value inc
Hint: Did you mean incr?

It fails because inc is in the namespace of Mods.

Mods.inc

- : int -> int = <fun>

Of course, if you open the module, you can directly name inc:

open Mods;;
inc;;

- : int -> int = <fun>

7.3.2 Dune

Dune provides a command to make it easier to start utop with libraries already loaded. Suppose we add this dune file to
the same directory as mods.ml:

(library
(name mods))

That tells dune to build a library named Mods out of mods.ml (and any other files in the same directory, if they existed).
Then we can run this command to launch utop with that library already loaded:

$ dune utop

Now right away we can access components of Mods without having to issue a #load directive:

Mods.inc

- : int -> int = <fun>

The dune utop command accepts a directory name as an argument if you want to load libraries in a particular subdi-
rectory of your source code.
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7.3.3 Initializing the Toplevel

If you are doing a lot of testing of a particular module, it can be annoying to have to type directives every time you start
utop. You really want to initialize the toplevel with some code as it launches, so that you don’t have to keep typing that
code.
The solution is to create a file in the working directory and call that file .ocamlinit. Note that the . at the front of
that filename is required and makes it a hidden file that won’t appear in directory listings unless explicitly requested (e.g.,
with ls -a). Everything in .ocamlinit will be processed by utop when it loads.
For example, suppose you create a file named .ocamlinit in the same directory as mods.ml, and in that file put the
following code:

open Mods;;

Now restart utop with dune utop. All the names defined in Mods will already be in scope. For example, these will
both succeed:

inc;;
M.y;;

- : int -> int = <fun>

- : int = 42

7.3.4 Requiring Libraries

Suppose you wanted to experiment with some OUnit code in utop. You can’t actually open it:

open OUnit2;;

File "[8]", line 1, characters 5-11:
1 | open OUnit2;;

^^^^^^
Error: Unbound module OUnit2
Hint: Did you mean Unit?

The problem is that the OUnit library hasn’t been loaded into utop yet. It can be with the following directive:

#require "ounit2";;

Now you can successfully load your own module without getting an error.

open OUnit2;;
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7.3.5 Load vs Use

There is a big difference between #load-ing a compiled module file and #use-ing an uncompiled source file. The
former loads bytecode and makes it available for use. For example, loading mods.cmo caused the Mod module to be
available, and we could access its members with expressions like Mod.b. The latter (#use) is textual inclusion: it’s like
typing the contents of the file directly into the toplevel. So using mods.ml does not cause a Modmodule to be available,
and the definitions in the file can be accessed directly, e.g., b.
For example, in the following interaction, we can directly refer to b but cannot use the qualified name Mods.b:

# #use "mods.ml"

# b;;
val b : string = "bigred"

# Mods.b;;
Error: Unbound module Mods

Whereas in this interaction the situation is reversed:

# #directory "_build";;
# #load "mods.cmo";;

# Mods.b;;
- : string = "bigred"

# b;;
Error: Unbound value b

So when you’re using the toplevel to experiment with your code, it’s often better to work with #load rather than #use.
The #load directive accurately reflects how your modules interact with each other and with the outside world.

7.4 Encapsulation

One of the main concerns of a module system is to provide encapsulation: the hiding of information about implementation
behind an interface. OCaml’s module systemmakes this possible with a feature we’ve already seen: the opacity thatmodule
type annotations create. One special use of opacity is the declaration of abstract types. We’ll study both of those ideas in
this section.

7.4.1 Opacity

When implementing a module, you might sometimes have helper functions that you don’t want to expose to clients of the
module. For example, maybe you’re implementing a math module that provides a tail-recursive factorial function:

module Math = struct
(** [fact_aux n acc] is [n! * acc]. *)
let rec fact_aux n acc =

if n = 0 then acc else fact_aux (n - 1) (n * acc)

(** [fact n] is [n!]. *)
let fact n = fact_aux n 1

end
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module Math : sig val fact_aux : int -> int -> int val fact : int -> int end

You’d like to make fact usable by clients of Math, but you’d also like to keep fact_aux hidden. But in the code
above, you can see that fact_aux is visible in the signature inferred for Math. One way to hide it is simply to nest
fact_aux:

module Math = struct
(** [fact n] is [n!]. *)
let fact n =

(** [fact_aux n acc] is [n! * acc]. *)
let rec fact_aux n acc =
if n = 0 then acc else fact_aux (n - 1) (n * acc)

in
fact_aux n 1

end

module Math : sig val fact : int -> int end

Look at the signature, and notice how fact_aux is gone. But, that nesting makes fact just a little harder to read. It
also means fact_aux is not available for any other functions inside Math to use. In this case that’s probably fine—there
probably aren’t any other functions in Math that need fact_aux. But if there were, we couldn’t nest fact_aux.
So another way to hide fact_aux from clients of Math, while still leaving it available for implementers of Math, is to
use a module type that exposes only those names that clients should see:

module type MATH = sig
(** [fact n] is [n!]. *)
val fact : int -> int

end

module Math : MATH = struct
(** [fact_aux n acc] is [n! * acc]. *)
let rec fact_aux n acc =

if n = 0 then acc else fact_aux (n - 1) (n * acc)

let fact n = fact_aux n 1
end

module type MATH = sig val fact : int -> int end

module Math : MATH

Now since MATH does not mention fact_aux, the module type annotation Math : MATH causes fact_aux to be
hidden:

Math.fact_aux

File "[4]", line 1, characters 0-13:
1 | Math.fact_aux

^^^^^^^^^^^^^
Error: Unbound value Math.fact_aux

In that sense, module type annotations are opaque: they can prevent visibility of module items. We say that the module
type seals the module, making any components not named in the module type be inaccessible.
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Important: Remember that module type annotations are therefore not only about checking to see whether a module
defines certain items. The annotations also hide items.

What if you did want to just check the definitions, but not hide anything? Then don’t supply the annotation at the time of
module definition:

module type MATH = sig
(** [fact n] is [n!]. *)
val fact : int -> int

end

module Math = struct
(** [fact_aux n acc] is [n! * acc]. *)
let rec fact_aux n acc =

if n = 0 then acc else fact_aux (n - 1) (n * acc)

let fact n = fact_aux n 1
end

module MathCheck : MATH = Math

module type MATH = sig val fact : int -> int end

module Math : sig val fact_aux : int -> int -> int val fact : int -> int end

module MathCheck : MATH

Now Math.fact_aux is visible, but MathCheck.fact_aux is not:

Math.fact_aux

- : int -> int -> int = <fun>

MathCheck.fact_aux

File "[7]", line 1, characters 0-18:
1 | MathCheck.fact_aux

^^^^^^^^^^^^^^^^^^
Error: Unbound value MathCheck.fact_aux

You wouldn’t even have to give the “check” module a name since you probably never intend to access it; you could instead
leave it anonymous:

module _ : MATH = Math

A Comparison to Visibility Modifiers. The use of sealing in OCaml is thus similar to the use of visibility modifiers
such as private and public in Java. In fact one way to think about Java class definitions is that they simultaneously
define multiple signatures.
For example, consider this Java class:
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class C {
private int x;
public int y;

}

An analogy to it in OCaml would be the following modules and types:

module type C_PUBLIC = sig
val y : int

end

module CPrivate = struct
let x = 0
let y = 0

end

module C : C_PUBLIC = CPrivate

module type C_PUBLIC = sig val y : int end

module CPrivate : sig val x : int val y : int end

module C : C_PUBLIC

With those definitions, any code that uses C will have access only to the names exposed in the C_PUBLIC module type.
That analogy can be extended to the other visibility modifiers, protected and default, as well. Which means that Java
classes are effectively defining four related types, and the compiler is making sure the right type is used at each place in
the code base C is named. No wonder it can be challenging to master visibility in OO languages at first.

7.4.2 Abstract Types

In an earlier section we implemented stacks as lists with the following module and type:

module type LIST_STACK = sig
(** [Empty] is raised when an operation cannot be applied

to an empty stack. *)
exception Empty

(** [empty] is the empty stack. *)
val empty : 'a list

(** [is_empty s] is whether [s] is empty. *)
val is_empty : 'a list -> bool

(** [push x s] pushes [x] onto the top of [s]. *)
val push : 'a -> 'a list -> 'a list

(** [peek s] is the top element of [s].
Raises [Empty] if [s] is empty. *)

val peek : 'a list -> 'a

(** [pop s] is all but the top element of [s].

(continues on next page)
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(continued from previous page)

Raises [Empty] if [s] is empty. *)
val pop : 'a list -> 'a list

end

module ListStack : LIST_STACK = struct
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push x s = x :: s
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s

end

What if we wanted to modify that data structure to add an operation for the size of the stack? The easy way would be to
implement it using List.length:

module type LIST_STACK = sig
...
(** [size s] is the number of elements on the stack. *)
val size : 'a list -> int

end

module ListStack : LIST_STACK = struct
...
let size = List.length

end

That results in a linear-time implementation of size. What if we wanted a faster, constant-time implementation? At
the cost of a little space, we could cache the size of the stack. Let’s now represent the stack as a pair, where the first
component of the pair is the same list as before, and the second component of the pair is the size of the stack:

module ListStackCachedSize = struct
exception Empty
let empty = ([], 0)
let is_empty = function ([], _) -> true | _ -> false
let push x (stack, size) = (x :: stack, size + 1)
let peek = function ([], _) -> raise Empty | (x :: _, _) -> x
let pop = function

| ([], _) -> raise Empty
| (_ :: stack, size) -> (stack, size - 1)

end

We have a big problem. ListStackCachedSize does not implement the LIST_STACK module type, because that
module type specifies 'a list throughout it to represent the stack—not 'a list * int.

module CheckListStackCachedSize : LIST_STACK = ListStackCachedSize

File "[12]", line 1, characters 47-66:
1 | module CheckListStackCachedSize : LIST_STACK = ListStackCachedSize

^^^^^^^^^^^^^^^^^^^
Error: Signature mismatch:

...
Values do not match:
val empty : 'a list * int

(continues on next page)
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(continued from previous page)

is not included in
val empty : 'a list

The type 'a list * int is not compatible with the type 'b list
File "[10]", line 7, characters 2-21: Expected declaration
File "[11]", line 3, characters 6-11: Actual declaration

Moreover, any code we previously wrote using ListStack now has to be modified to deal with the pair, which could
mean revising pattern matches, function types, and so forth.
As you no doubt learned in earlier programming courses, the problem we are encountering here is a lack of encapsulation.
We should have kept the type that implements ListStack hidden from clients. In Java, for example, we might have
written:

class ListStack<T> {
private List<T> stack;
private int size;
...

}

That way clients of ListStack would be unaware of stack or size. In fact, they wouldn’t be able to name those
fields at all. Instead, they would just use ListStack as the type of the stack:

ListStack<Integer> s = new ListStack<>();
s.push(1);

So in OCaml, how can we keep the representation type of the stack hidden? What we learned about opacity and seal-
ing thus far does not suffice. The problem is that the type 'a list * int literally appears in the signature of
ListStackCachedSize, e.g., in push:

ListStackCachedSize.push

- : 'a -> 'a list * int -> 'a list * int = <fun>

A module type annotation could hide one of the values defined in ListStackCachedSize, e.g., push itself, but
that doesn’t solve the problem: we need to hide the type 'a list * int while exposing the operation push. So
OCaml has a feature for doing exactly that: abstract types. Let’s see an example of this feature.
We begin by modifying LIST_STACK, replacing 'a list with a new type 'a stack everywhere. We won’t repeat
the specification comments here, so as to keep the example shorter. And while we’re at it, let’s add the size operation.

module type LIST_STACK = sig
type 'a stack
exception Empty
val empty : 'a stack
val is_empty : 'a stack -> bool
val push : 'a -> 'a stack -> 'a stack
val peek : 'a stack -> 'a
val pop : 'a stack -> 'a stack
val size : 'a stack -> int

end

Note how 'a stack is not actually defined in that signature. We haven’t said anything about what it is. It might be 'a
list, or 'a list * int, or {stack : 'a list; size : int}, or anything else. That is what makes it
an abstract type: we’ve declared its name but not specified its definition.
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Now ListStackCachedSize can implement that module type with the addition of just one line of code: the first
line of the structure, which defines 'a stack:

module ListStackCachedSize : LIST_STACK = struct
type 'a stack = 'a list * int
exception Empty
let empty = ([], 0)
let is_empty = function ([], _) -> true | _ -> false
let push x (stack, size) = (x :: stack, size + 1)
let peek = function ([], _) -> raise Empty | (x :: _, _) -> x
let pop = function

| ([], _) -> raise Empty
| (_ :: stack, size) -> (stack, size - 1)

let size = snd
end

module ListStackCachedSize : LIST_STACK

Take a careful look at the output: nowhere does 'a list show up in it. In fact, only LIST_STACK does. And
LIST_STACK mentions only 'a stack. So no one’s going to know that internally a list is used. (Ok, they’re going to
know: the name suggests it. But the point is they can’t take advantage of that, because the type is abstract.)
Likewise, our original implementation with linear-time size satisfies the module type. We just have to add a line to
define 'a stack:

module ListStack : LIST_STACK = struct
type 'a stack = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push x s = x :: s
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s
let size = List.length

end

module ListStack : LIST_STACK

Note that omitting that added line would result in an error, just as if we had failed to define push or any of the other
operations from the module type:

module ListStack : LIST_STACK = struct
(* type 'a stack = 'a list *)
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push x s = x :: s
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s
let size = List.length

end

File "[17]", lines 1-10, characters 32-3:
1 | ................................struct

(continues on next page)
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2 | (* type 'a stack = 'a list *)
3 | exception Empty
4 | let empty = []
5 | let is_empty = function [] -> true | _ -> false
6 | let push x s = x :: s
7 | let peek = function [] -> raise Empty | x :: _ -> x
8 | let pop = function [] -> raise Empty | _ :: s -> s
9 | let size = List.length

10 | end
Error: Signature mismatch:

...
The type `stack' is required but not provided
File "[14]", line 2, characters 2-15: Expected declaration

Here is a third, custom implementation of LIST_STACK. This one is deliberately overly-complicated, in part to illustrate
how the abstract type can hide implementation details that are better not revealed to clients:

module CustomStack : LIST_STACK = struct
type 'a entry = {top : 'a; rest : 'a stack; size : int}
and 'a stack = S of 'a entry option
exception Empty
let empty = S None
let is_empty = function S None -> true | _ -> false
let size = function S None -> 0 | S (Some {size}) -> size
let push x s = S (Some {top = x; rest = s; size = size s + 1})
let peek = function S None -> raise Empty | S (Some {top}) -> top
let pop = function S None -> raise Empty | S (Some {rest}) -> rest

end

module CustomStack : LIST_STACK

Is that really a “list” stack? It satisfies the module type LIST_STACK. But upon reflection, that module type never really
had anything to do with lists once we made the type 'a stack abstract. There’s really no need to call it LIST_STACK.
We’d be better off using just STACK, since it can be implemented with list or without. At that point, we could just
go with Stack as its name, since there is no module named Stack we’ve written that would be confused with it. That
avoids the all-caps look of our code shouting at us.

module type Stack = sig
type 'a stack
exception Empty
val empty : 'a stack
val is_empty : 'a stack -> bool
val push : 'a -> 'a stack -> 'a stack
val peek : 'a stack -> 'a
val pop : 'a stack -> 'a stack
val size : 'a stack -> int

end

module ListStack : Stack = struct
type 'a stack = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push x s = x :: s

(continues on next page)
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let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s
let size = List.length

end

There’s one further naming improvement we could make. Notice the type of ListStack.empty (and don’t worry
about the abstr part for now; we’ll come back to it):

ListStack.empty

- : 'a ListStack.stack = <abstr>

That type, 'a ListStack.stack, is rather unwieldy, because it conveys the word “stack” twice: once in the name of
the module, and again in the name of the representation type inside that module. In places like this, OCaml programmers
idiomatically use a standard name, t, in place of a longer representation type name:

module type Stack = sig
type 'a t
exception Empty
val empty : 'a t
val is_empty : 'a t -> bool
val push : 'a -> 'a t -> 'a t
val peek : 'a t -> 'a
val pop : 'a t -> 'a t
val size : 'a t -> int

end

module ListStack : Stack = struct
type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push x s = x :: s
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s
let size = List.length

end

module CustomStack : Stack = struct
type 'a entry = {top : 'a; rest : 'a t; size : int}
and 'a t = S of 'a entry option
exception Empty
let empty = S None
let is_empty = function S None -> true | _ -> false
let size = function S None -> 0 | S (Some {size}) -> size
let push x s = S (Some {top = x; rest = s; size = size s + 1})
let peek = function S None -> raise Empty | S (Some {top}) -> top
let pop = function S None -> raise Empty | S (Some {rest}) -> rest

end

Now the type of stacks is simpler:

ListStack.empty;;
CustomStack.empty;;
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- : 'a ListStack.t = <abstr>

- : 'a CustomStack.t = <abstr>

That idiom is fairly common when there’s a single representation type exposed by an interface to a data structure. You’ll
see it used throughout the standard library.
In informal conversation we would usually pronounce those types without the “dot t” part. For example, we might say
“alpha ListStack”, simply ignoring the t—though it does technically have to be there to be legal OCaml code.
Finally, abstract types are really just a special case of opacity. You actually can expose the definition of a type in a
signature if you want to:

module type T = sig
type t = int
val x : t

end

module M : T = struct
type t = int
let x = 42

end

let a : int = M.x

module type T = sig type t = int val x : t end

module M : T

val a : int = 42

Note how we’re able to use M.x as an int. That works because the equality of types t and int has been exposed in
the module type. But if we kept t abstract, the same usage would fail:

module type T = sig
type t (* = int *)
val x : t

end

module M : T = struct
type t = int
let x = 42

end

let a : int = M.x

module type T = sig type t val x : t end

module M : T
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File "[24]", line 11, characters 14-17:
11 | let a : int = M.x

^^^
Error: This expression has type M.t but an expression was expected of type

int

We’re not allowed to use M.x at type int outside of M, because its type M.t is abstract. This is encapsulation at work,
keeping that implementation detail hidden.

7.4.3 Pretty Printing

In some output above, we observed something curious: the toplevel prints <abstr> in place of the actual contents of a
value whose type is abstract:

ListStack.empty;;
ListStack.(empty |> push 1 |> push 2);;

- : 'a ListStack.t = <abstr>

- : int ListStack.t = <abstr>

Recall that the toplevel uses this angle-bracket convention to indicate an unprintable value. We’ve encountered that before
with functions and <fun>:

fun x -> x

- : 'a -> 'a = <fun>

On the one hand, it’s reasonable for the toplevel to behave this way. Once a type is abstract, its implementation isn’t
meant to be revealed to clients. So actually printing out the list [] or [2; 1] as responses to the above inputs would be
revealing more than is intended.
On the other hand, it’s also reasonable for implementers to provide clients with a friendly way to view a value of an abstract
type. Java programmers, for example, will often write toString() methods so that objects can be printed as output
in the terminal or in JShell. To support that, the OCaml toplevel has a directive #install_printer, which registers
a function to print values. Here’s how it works.

• You write a pretty printing function of type Format.formatter -> t -> unit, for whatever type t you
like. Let’s suppose for sake of example that you name that function pp.

• You invoke #install_printer pp in the toplevel.
• From now on, anytime the toplevel wants to print a value of type t it uses your function pp to do so.

It probably makes sense the pretty printing function needs to take in a value of type t (because that’s what it needs to
print) and returns unit (as other printing functions do). But why does it take the Format.formatter argument?
It’s because of a fairly high-powered feature that OCaml is attempting to provide here: automatic line breaking and
indentation in the middle of very large outputs.
Consider the output from this expression, which creates nested lists:

List.init 15 (fun n -> List.init n (Fun.const n))
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- : int list list =
[[]; [1]; [2; 2]; [3; 3; 3]; [4; 4; 4; 4]; [5; 5; 5; 5; 5];
[6; 6; 6; 6; 6; 6]; [7; 7; 7; 7; 7; 7; 7]; [8; 8; 8; 8; 8; 8; 8; 8];
[9; 9; 9; 9; 9; 9; 9; 9; 9]; [10; 10; 10; 10; 10; 10; 10; 10; 10; 10];
[11; 11; 11; 11; 11; 11; 11; 11; 11; 11; 11];
[12; 12; 12; 12; 12; 12; 12; 12; 12; 12; 12; 12];
[13; 13; 13; 13; 13; 13; 13; 13; 13; 13; 13; 13; 13];
[14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14]]

Each inner list contains n copies of the number n. Note how the indentation and line breaks are somewhat sophisticated.
All the inner lists are indented one space from the left-hand margin. Line breaks have been inserted to avoid splitting
inner lists over multiple lines.
The Formatmodule is what provides this functionality, and Format.formatter is an abstract type in it. You could
think of a formatter as being a place to send output, like a file, and have it be automatically formatted along the way. The
typical use of a formatter is as argument to a function such as Format.fprintf, which like Printf uses format
specifiers.
For example, suppose you wanted to change how strings are printed by the toplevel and add ” kupo” to the end of each
string. Here’s code that would do it:

let kupo_pp fmt s = Format.fprintf fmt "%s kupo" s;;
#install_printer kupo_pp;;

val kupo_pp : Format.formatter -> string -> unit = <fun>

Now you can see that the toplevel adds ” kupo” to each string while printing it, even though it’s not actual a part of the
original string:

let h = "Hello"
let s = String.length h

val h : string = Hello kupo

val s : int = 5

To keep ourselves from getting confused about strings in the rest of this section, let’s uninstall that pretty printer before
going on:

#remove_printer kupo_pp;;

As a bigger example, let’s add pretty printing to ListStack:

module type Stack = sig
type 'a t
exception Empty
val empty : 'a t
val is_empty : 'a t -> bool
val push : 'a -> 'a t -> 'a t
val peek : 'a t -> 'a
val pop : 'a t -> 'a t
val size : 'a t -> int
val pp :

(continues on next page)
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(Format.formatter -> 'a -> unit) -> Format.formatter -> 'a t -> unit
end

First, notice that we have to expose pp as part of the module type. Otherwise it would be encapsulated, hence we wouldn’t
be able to install it. Second, notice that the type of pp now takes an extra first argument of type Format.formatter
-> 'a -> unit. That is itself a pretty printer for type 'a, on which t is parameterized. We need that argument in
order to be able to pretty print the values of type 'a.

module ListStack : Stack = struct
type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push x s = x :: s
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s
let size = List.length
let pp pp_val fmt s =

let open Format in
let pp_break fmt () = fprintf fmt "@," in
fprintf fmt "@[<v 0>top of stack";
if s <> [] then fprintf fmt "@,";
pp_print_list ~pp_sep:pp_break pp_val fmt s;
fprintf fmt "@,bottom of stack@]"

end

In ListStack.pp, we use some of the advanced features of the Format module. Function Format.
pp_print_list does the heavy lifting to print all the elements of the stack. The rest of the code handles the in-
dentation and line breaks. Here’s the result:

#install_printer ListStack.pp

ListStack.empty

- : 'a ListStack.t = top of stack
bottom of stack

ListStack.(empty |> push 1 |> push 2)

- : int ListStack.t = top of stack
2
1
bottom of stack

For more information, see the toplevel manual (search for #install_printer), the Format module, and this OCaml
GitHub issue. The latter seems to be the only place that documents the use of extra arguments, as in pp_val above, to
print values of polymorphic types.
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7.5 Compilation Units

A compilation unit is a pair of OCaml source files in the same directory. They share the same base name, call it x, but
their extensions differ: one file is x.ml, the other is x.mli. The file x.ml is called the implementation, and x.mli is
called the interface.
For example, suppose that foo.mli contains exactly the following:

val x : int
val f : int -> int

and foo.ml, in the same directory, contains exactly the following:

let x = 0
let y = 12
let f x = x + y

Then compiling foo.ml will have the same effect as defining the module Foo as follows:

module Foo : sig
val x : int
val f : int -> int

end = struct
let x = 0
let y = 12
let f x = x + y

end

In general, when the compiler encounters a compilation unit, it treats it as defining a module and a signature like this:

module Foo
: sig (* insert contents of foo.mli here *) end

= struct
(* insert contents of foo.ml here *)

end

The unit name Foo is derived from the base name foo by just capitalizing the first letter. Notice that there is no named
module type being defined; the signature of Foo is actually anonymous.
The standard library uses compilation units to implement most of the modules we have been using so far, like List and
String. You can see that in the standard library source code.

7.5.1 Documentation Comments

Some documentation comments belong in the interface file, whereas others belong in the implementation file:
• Clients of an abstraction can be expected to read interface files, or rather the HTML documentation generated
from them. So the comments in an interface file should be written with that audience in mind. These comments
should describe how to use the abstraction, the preconditions for calling its functions, what exceptions they might
raise, and perhaps some notes on what algorithms are used to implement operations. The standard library’s List
module contains many examples of these kinds of comments.

• Clients should not be expected to read implementation files. Those files will be read by creators and maintainers
of the implementation. The documentation in the implementation file should provide information that explains
the internal details of the abstraction, such as how the representation type is used, how the code works, important
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internal invariants it maintains, and so forth. Maintainers can also be expected to read the specifications in the
interface files.

Documentation should not be duplicated between the files. In particular, the client-facing specification comments in the
interface file should not be duplicated in the implementation file. One reason is that duplication inevitably leads to errors.
Another reason is that OCamldoc has the ability to automatically inject the comments from the interface file into the
generated HTML from the implementation file.
OCamldoc comments can be placed either before or after an element of the interface. For example, both of these place-
ments are possible:

(** The mathematical constant 3.14... *)
val pi : float

val pi : float
(** The mathematical constant 3.14... *)

Tip: The standard library developers apparently prefer the post-placement of the comment, and OCamlFormat seems
to work better with that, too.

7.5.2 An Example with Stacks

Put this code in mystack.mli, noting that there is no sig..end around it or any module type:

type 'a t
exception Empty
val empty : 'a t
val is_empty : 'a t -> bool
val push : 'a -> 'a t -> 'a t
val peek : 'a t -> 'a
val pop : 'a t -> 'a t

We’re using the name “mystack” because the standard library already has a Stack module. Re-using that name could
lead to error messages that are somewhat hard to understand.
Also put this code in mystack.ml, noting that there is no struct..end around it or any module:

type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push = List.cons
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s

Create a dune file:

(library
(name mystack))

Compile the code and launch utop:
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$ dune utop

Your compilation unit is ready for use:

# Mystack.empty;;
- : 'a Mystack.t = <abstr>

7.5.3 Incomplete Compilation Units

What if either the interface or implementation file is missing for a compilation unit?
Missing Interface Files. Actually this is exactly how we’ve normally been working up until this point. For example,
you might have done some homework in a file named lab1.ml but never needed to worry about lab1.mli. There
is no requirement that every .ml file have a corresponding .mli file, or in other words, that every compilation unit be
complete.
If the .mli file is missing there is still a module that is created, as we saw back when we learned about #load and
modules. It just doesn’t have an automatically imposed signature. For example, the situation with lab1 above would
lead to the following module being created during compilation:

module Lab1 = struct
(* insert contents of lab1.ml here *)

end

Missing Implementation Files. This case is much rarer, and not one you are likely to encounter in everyday development.
But be aware that there is a misuse case that Java or C++ programmers sometimes accidentally fall into. Suppose you
have an interface for which there will be a few implementations. Thinking back to stacks earlier in this chapter, perhaps
you have a module type Stack and two modules that implement it, ListStack and CustomStack:

module type Stack = sig
type 'a t
val empty : 'a t
val push : 'a -> 'a t -> 'a t
(* etc. *)

end

module ListStack : Stack = struct
type 'a t = 'a list
let empty = []
let push = List.cons
(* etc. *)

end

module CustomStack : Stack = struct
(* omitted *)

end

It’s tempting to divide that code up into files as follows:

(********************************)
(* stack.mli *)
type 'a t
val empty : 'a t
val push : 'a -> 'a t -> 'a t

(continues on next page)
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(* etc. *)

(********************************)
(* listStack.ml *)
type 'a t = 'a list
let empty = []
let push = List.cons
(* etc. *)

(********************************)
(* customStack.ml *)
(* omitted *)

The reason it’s tempting is that in Java you might put the Stack interface into a Stack.java file, the ListStack
class in a ListStack.java file, and so forth. In C++ something similar might be done with .hpp and .cpp files.
But the OCaml file organization shown above just won’t work. To be a compilation unit, the interface for listStack.
mlmust be in listStack.mli. It can’t be in a file with any other name. So there’s no way with that code division to
stipulate that ListStack : Stack.
Instead, the code could be divided like this:

(********************************)
(* stack.ml *)
module type S = sig

type 'a t
val empty : 'a t
val push : 'a -> 'a t -> 'a t
(* etc. *)

end

(********************************)
(* listStack.ml *)
module M : Stack.S = struct

type 'a t = 'a list
let empty = []
let push = List.cons
(* etc. *)

end

(********************************)
(* customStack.ml *)
module M : Stack.S = struct

(* omitted *)
end

Note the following about that division:
• The module type goes in a .ml file not a .mli, because we’re not trying to create a compilation unit.
• We give short names to the modules and module types in the files, because they will already be inside a module
based on their filename. It would be rather verbose, for example, to name S something longer like Stack. If we
did, we’d have to write Stack.Stack in the module type annotations instead of Stack.S.

Another possibility for code division would be to put all the code in a single file stack.ml. That works if all the code
is part of the same library, but not if (e.g.) ListStack and CustomStack are developed by separate organizations.
If it is in a single file, then we could turn it into a compilation unit:
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(********************************)
(* stack.mli *)
module type S = sig

type 'a t
val empty : 'a t
val push : 'a -> 'a t -> 'a t
(* etc. *)

end

module ListStack : S

module CustomStack : S

(********************************)
(* stack.ml *)
module type S = sig

type 'a t
val empty : 'a t
val push : 'a -> 'a t -> 'a t
(* etc. *)

end

module ListStack : S = struct
type 'a t = 'a list
let empty = []
let push = List.cons
(* etc. *)

end

module CustomStack : S = struct
(* omitted *)

end

Unfortunately that does mean we’ve duplicated Stack.S in both the interface and implementation files. There’s no way
to automatically “import” an already declared module type from a .mli file into the corresponding .ml file.

7.6 Functional Data Structures

A functional data structure is one that does not make use of mutability. It’s possible to build functional data structures
both in functional languages and in imperative languages. For example, you could build a Java equivalent to OCaml’s
list type by creating a Node class whose fields are immutable by virtue of using the const keyword.
Functional data structures have the property of being persistent: updating the data structure with one of its operations
does not change the existing version of the data structure but instead produces a new version. Both exist and both can
still be accessed. A good language implementation will ensure that any parts of the data structure that are not changed
by an operation will be shared between the old version and the new version. Any parts that do change will be copied so
that the old version may persist. The opposite of a persistent data structure is an ephemeral data structure: changes are
destructive, so that only one version exists at any time. Both persistent and ephemeral data structures can be built in both
functional and imperative languages.
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7.6.1 Lists

The built-in singly-linked list data structure in OCaml is functional. We know that, because we’ve seen how to imple-
ment it with algebraic data types. It’s also persistent, which we can demonstrate:

let lst = [1; 2];;
let lst' = List.tl lst;;
lst;;

val lst : int list = [1; 2]

val lst' : int list = [2]

- : int list = [1; 2]

Taking the tail of lst does not change the list. Both lst and lst' coexist without affecting one another.

7.6.2 Stacks

We implemented stacks earlier in this chapter. Here’s a terse variant of one of those implementations, in which we add a
to_list operation to make it easier to view the contents of the stack in examples:

module type Stack = sig
type 'a t
exception Empty
val empty : 'a t
val is_empty : 'a t -> bool
val push : 'a -> 'a t -> 'a t
val peek : 'a t -> 'a
val pop : 'a t -> 'a t
val size : 'a t -> int
val to_list : 'a t -> 'a list

end

module ListStack : Stack = struct
type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push = List.cons
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s
let size = List.length
let to_list = Fun.id

end

That implementation is functional, as can be seen above, and also persistent:

open ListStack;;
let s = empty |> push 1 |> push 2;;
let s' = pop s;;
to_list s;;
to_list s';;
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val s : int ListStack.t = <abstr>

val s' : int ListStack.t = <abstr>

- : int list = [2; 1]

- : int list = [1]

The value s is unchanged by the pop operation that creates s'. Both versions of the stack coexist.
The Stack module type gives us a strong hint that the data structure is persistent in the types it provides for push and
pop:

val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a t

Both of those take a stack as an argument and return a new stack as a result. An ephemeral data structure usually would
not bother to return a stack. In Java, for example, similar methods might have a void return type; the equivalent in
OCaml would be returning unit.

7.6.3 Options vs Exceptions

All of our stack implementations so far have raised an exception whenever peek or pop is applied to the empty stack.
Another possibility would be to use an option for the return value. If the input stack is empty, then peek and pop
return None; otherwise, they return Some.

module type Stack = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val push : 'a -> 'a t -> 'a t
val peek : 'a t -> 'a option
val pop : 'a t -> 'a t option
val size : 'a t -> int
val to_list : 'a t -> 'a list

end

module ListStack : Stack = struct
type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push = List.cons
let peek = function [] -> None | x :: _ -> Some x
let pop = function [] -> None | _ :: s -> Some s
let size = List.length
let to_list = Fun.id

end

But that makes it harder to pipeline:

ListStack.(empty |> push 1 |> pop |> peek)
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File "[5]", line 1, characters 11-33:
1 | ListStack.(empty |> push 1 |> pop |> peek)

^^^^^^^^^^^^^^^^^^^^^^
Error: This expression has type int ListStack.t option

but an expression was expected of type 'a ListStack.t

The types break down for the pipeline right after the pop, because that now returns an 'a t option, but peek
expects an input that is merely an 'a t.
It is possible to define some additional operators to help restore the ability to pipeline. In fact, these functions are already
defined in the Option module in the standard library, though not as infix operators:

(* Option.map aka fmap *)
let ( >>| ) opt f =
match opt with
| None -> None
| Some x -> Some (f x)

(* Option.bind *)
let ( >>= ) opt f =
match opt with
| None -> None
| Some x -> f x

val ( >>| ) : 'a option -> ('a -> 'b) -> 'b option = <fun>

val ( >>= ) : 'a option -> ('a -> 'b option) -> 'b option = <fun>

We can use those as needed for pipelining:

ListStack.(empty |> push 1 |> pop >>| push 2 >>= pop >>| push 3 >>| to_list)

- : int list option = Some [3]

But it’s not so pleasant to figure out which of the three operators to use where.
There is therefore a tradeoff in the interface design:

• Using options ensures that surprising exceptions regarding empty stacks never occur at run-time. The program is
therefore more robust. But the convenient pipeline operator is lost.

• Using exceptions means that programmers don’t have to write as much code. If they are sure that an exception can’t
occur, they can omit the code for handling it. The program is less robust, but writing it is more convenient.

There is thus a tradeoff between writing more code early (with options) or doing more debugging later (with exceptions).
The OCaml standard library has recently begun providing both versions of the interface in a data structure, so that the
client can make the choice of how they want to use it. For example, we could provide both peek and peek_opt, and
the same for pop, for clients of our stack module:

module type Stack = sig
type 'a t
exception Empty
val empty : 'a t
val is_empty : 'a t -> bool
val push : 'a -> 'a t -> 'a t

(continues on next page)
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val peek : 'a t -> 'a
val peek_opt : 'a t -> 'a option
val pop : 'a t -> 'a t
val pop_opt : 'a t -> 'a t option
val size : 'a t -> int
val to_list : 'a t -> 'a list

end

module ListStack : Stack = struct
type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let push = List.cons
let peek = function [] -> raise Empty | x :: _ -> x
let peek_opt = function [] -> None | x :: _ -> Some x
let pop = function [] -> raise Empty | _ :: s -> s
let pop_opt = function [] -> None | _ :: s -> Some s
let size = List.length
let to_list = Fun.id

end

One nice thing about this implementation is that it is efficient. All the operations except for size are constant time. We
saw earlier in the chapter that size could be made constant time as well, at the cost of some extra space — though just
a constant factor more — by caching the size of the stack at each node in the list.

7.6.4 Queues

Queues and stacks are fairly similar interfaces. We’ll stick with exceptions instead of options for now.

module type Queue = sig
(** An ['a t] is a queue whose elements have type ['a]. *)
type 'a t

(** Raised if [front] or [dequeue] is applied to the empty queue. *)
exception Empty

(** [empty] is the empty queue. *)
val empty : 'a t

(** [is_empty q] is whether [q] is empty. *)
val is_empty : 'a t -> bool

(** [enqueue x q] is the queue [q] with [x] added to the end. *)
val enqueue : 'a -> 'a t -> 'a t

(** [front q] is the element at the front of the queue. Raises [Empty]
if [q] is empty. *)

val front : 'a t -> 'a

(** [dequeue q] is the queue containing all the elements of [q] except the
front of [q]. Raises [Empty] is [q] is empty. *)

val dequeue : 'a t -> 'a t

(continues on next page)
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(** [size q] is the number of elements in [q]. *)
val size : 'a t -> int

(** [to_list q] is a list containing the elements of [q] in order from
front to back. *)

val to_list : 'a t -> 'a list
end

Important: Similarly to peek and pop, note how front and dequeue divide the responsibility of getting the first
element vs. getting all the rest of the elements.

It’s easy to implement queues with lists, just as it was for implementing stacks:

module ListQueue : Queue = struct
(** The list [x1; x2; ...; xn] represents the queue with [x1] at its front,

followed by [x2], ..., followed by [xn]. *)
type 'a t = 'a list
exception Empty
let empty = []
let is_empty = function [] -> true | _ -> false
let enqueue x q = q @ [x]
let front = function [] -> raise Empty | x :: _ -> x
let dequeue = function [] -> raise Empty | _ :: q -> q
let size = List.length
let to_list = Fun.id

end

module ListQueue : Queue

But despite being as easy, this implementation is not as efficient as our list-based stacks. Dequeueing is a constant-time
operation with this representation, but enqueueing is a linear-time operation. That’s because dequeue does a single
pattern match, whereas enqueue must traverse the entire list to append the new element at the end.
There’s a very clever way to do better on efficiency. We can use two lists to represent a single queue. This representation
was invented by Robert Melville as part of his PhD dissertation at Cornell (Asymptotic Complexity of Iterative Computa-
tions, Jan 1981), which was advised by Prof. David Gries. Chris Okasaki (Purely Functional Data Structures, Cambridge
University Press, 1988) calls these batched queues. Sometimes you will see this same implementation referred to as “im-
plementing a queue with two stacks”. That’s because stacks and lists are so similar (as we’ve already seen) that you could
rewrite pop as List.tl, and so forth.
The core idea has a Part A and a Part B. Part A is: we use the two lists to split the queue into two pieces, the inbox and
outbox. When new elements are enqueued, we put them in the inbox. Eventually (we’ll soon come to how) elements are
transferred from the inbox to the outbox. When a dequeue is requested, that element is removed from the outbox; or when
the front element is requested, we check the outbox for it. For example, if the inbox currently had [3; 4; 5] and the
outbox had [1; 2], then the front element would be 1, which is the head of the outbox. Dequeuing would remove that
element and leave the outbox with just [2]. Likewise, enqueuing 6 would make the inbox become [3; 4; 5; 6].
The efficiency of front and dequeue is very good so far. We just have to take the head or tail of the outbox, respec-
tively, assuming it is non-empty. Those are constant-time operations. But the efficiency of enqueue is still bad. It’s
linear time, because we have to append the new element to the end of the list. It’s too bad we have to use the append
operator, which is inherently linear time. It would be much better if we could use cons, which is constant time.
So here’s Part B of the core idea: let’s keep the inbox in reverse order. For example, if we enqueued 3 then 4 then 5,
the inbox would actually be [5; 4; 3], not [3; 4; 5]. Then if 6 were enqueued next, we could cons it onto the
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beginning of the inbox, which becomes [6; 5; 4; 3]. The queue represented by inbox i and outbox o is therefore
o @ List.rev i. So enqueue can now always be a constant-time operation.
But what about dequeue (and front)? They’re constant time too, as long as the outbox is not empty. If it’s empty,
we have a problem. We need to transfer whatever is in the inbox to the outbox at that point. For example, if the outbox
is empty, and the inbox is [6; 5; 4; 3], then we need to switch them around, making the outbox be [3; 4; 5;
6] and the inbox be empty. That’s actually easy: we just have to reverse the list.
Unfortunately, we just re-introduced a linear-time operation. But with one crucial difference: we don’t have to do that
linear-time reverse on every dequeue, whereas with ListQueue above we had to do the linear-time append on every
enqueue. Instead, we only have to do the reverse on those rare occasions when the outbox becomes empty.
So even though in the worst case dequeue (and front) will be linear time, most of the time they will not be. In
fact, later in this book when we study amortized analysis we will show that in the long run they can be understood as
constant-time operations. For now, here’s a piece of intuition to support that claim: every individual element enters the
inbox once (with a cons), moves to the outbox once (with a pattern match then cons), and leaves the outbox once (with a
pattern match). Each of those is constant time. So each element only ever experiences constant-time operations from its
own perspective.
For now, let’s move on to implementing these ideas. In the implementation, we’ll add one more idea: the outbox always
has to have an element in it, unless the queue is empty. In other words, if the outbox is empty, we’re guaranteed the inbox
is too. That requirement isn’t necessary for batched queues, but it does keep the code simpler by reducing the number
of times we have to check whether a list is empty. The tiny tradeoff is that if the queue is empty, enqueue now has to
directly put an element into the outbox. No matter, that’s still a constant-time operation.

module BatchedQueue : Queue = struct
(** [{o; i}] represents the queue [o @ List.rev i]. For example,

[{o = [1; 2]; i = [5; 4; 3]}] represents the queue [1, 2, 3, 4, 5],
where [1] is the front element. To avoid ambiguity about emptiness,
whenever only one of the lists is empty, it must be [i]. For example,
[{o = [1]; i = []}] is a legal representation, but [{o = []; i = [1]}]
is not. This implies that if [o] is empty, [i] must also be empty. *)

type 'a t = {o : 'a list; i : 'a list}

exception Empty

let empty = {o = []; i = []}

let is_empty = function
| {o = []} -> true
| _ -> false

let enqueue x = function
| {o = []} -> {o = [x]; i = []}
| {o; i} -> {o; i = x :: i}

let front = function
| {o = []} -> raise Empty
| {o = h :: _} -> h

let dequeue = function
| {o = []} -> raise Empty
| {o = [_]; i} -> {o = List.rev i; i = []}
| {o = _ :: t; i} -> {o = t; i}

let size {o; i} = List.(length o + length i)

let to_list {o; i} = o @ List.rev i

(continues on next page)
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end

module BatchedQueue : Queue

The efficiency of batched queues comes at a price in readability. If we compare ListQueue and BatchedQueue, it’s
hopefully clear that ListQueue is a simple and correct implementation of a queue data structure. It’s probably far less
clear that BatchedQueue is a correct implementation. Just look at how many paragraphs of writing it took to explain
it above!

7.6.5 Maps

Recall that a map (aka dictionary) binds keys to values. Here is a module type for maps. There are many other operations
a map might support, but these will suffice for now.

module type Map = sig
(** [('k, 'v) t] is the type of maps that bind keys of type ['k] to

values of type ['v]. *)
type ('k, 'v) t

(** [empty] does not bind any keys. *)
val empty : ('k, 'v) t

(** [insert k v m] is the map that binds [k] to [v], and also contains
all the bindings of [m]. If [k] was already bound in [m], that old
binding is superseded by the binding to [v] in the returned map. *)

val insert : 'k -> 'v -> ('k, 'v) t -> ('k, 'v) t

(** [lookup k m] is the value bound to [k] in [m]. Raises: [Not_found] if [k]
is not bound in [m]. *)

val lookup : 'k -> ('k, 'v) t -> 'v

(** [bindings m] is an association list containing the same bindings as [m].
The keys in the list are guaranteed to be unique. *)

val bindings : ('k, 'v) t -> ('k * 'v) list
end

module type Map =
sig

type ('k, 'v) t
val empty : ('k, 'v) t
val insert : 'k -> 'v -> ('k, 'v) t -> ('k, 'v) t
val lookup : 'k -> ('k, 'v) t -> 'v
val bindings : ('k, 'v) t -> ('k * 'v) list

end

Note how Map.t is parameterized on two types, 'k and 'v, which are written in parentheses and separated by commas.
Although ('k, 'v) might look like a pair of values, it is not: it is a syntax for writing multiple type variables.
Recall that association lists are lists of pairs, where the first element of each pair is a key, and the second element is the
value it binds. For example, here is an association list that maps some well-known names to an approximation of their
numeric value:
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[("pi", 3.14); ("e", 2.718); ("phi", 1.618)]

Naturally we can implement the Map module type with association lists:

module AssocListMap : Map = struct
(** The list [(k1, v1); ...; (kn, vn)] binds key [ki] to value [vi].

If a key appears more than once in the list, it is bound to the
the left-most occurrence in the list. *)

type ('k, 'v) t = ('k * 'v) list
let empty = []
let insert k v m = (k, v) :: m
let lookup k m = List.assoc k m
let keys m = List.(m |> map fst |> sort_uniq Stdlib.compare)
let bindings m = m |> keys |> List.map (fun k -> (k, lookup k m))

end

module AssocListMap : Map

This implementation of maps is persistent. For example, adding a new binding to the map m below does not change m
itself:

open AssocListMap
let m = empty |> insert "pi" 3.14 |> insert "e" 2.718
let m' = m |> insert "phi" 1.618
let b = bindings m
let b' = bindings m'

val m : (string, float) AssocListMap.t = <abstr>

val m' : (string, float) AssocListMap.t = <abstr>

val b : (string * float) list = [("e", 2.718); ("pi", 3.14)]

val b' : (string * float) list = [("e", 2.718); ("phi", 1.618); ("pi", 3.14)]

The insert operation is constant time, which is great. But the lookup operation is linear time. It’s possible to domuch
better than that. In a later chapter, we’ll see how to do better. Logarithmic-time performance is achievable with balanced
binary trees, and something like constant-time performance with hash tables. Neither of those, however, achieves the
simplicity of the code above.
The bindings operation is complicated by potential duplicate keys in the list. It uses a keys helper function to extract
the unique list of keys with the help of library function List.sort_uniq. That function sorts an input list and in the
process discards duplicates. It requires a comparison function as input.

Note: A comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller.

Here we use the standard library’s comparison function Stdlib.compare, which behaves essentially the same as the
built-in comparison operators =, <, >, etc. Custom comparison functions are useful if you want to have a relaxed notion
of what being a duplicate means. For example, maybe you’d like to ignore the case of strings, or the sign of a number,
etc.
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The running time of List.sort_uniq is linearithmic, and it produces a linear number of keys as output. For each of
those keys, we do a linear-time lookup operation. So the total running time of bindings is 𝑂(𝑛 log𝑛) + 𝑂(𝑛) ⋅ 𝑂(𝑛),
which is 𝑂(𝑛2). We can definitely do better than that with more advanced data structures.
Actually we can have a constant-time bindings operation even with association lists, if we are willing to pay for a
linear-time insert operation:

module UniqAssocListMap : Map = struct
(** The list [(k1, v1); ...; (kn, vn)] binds key [ki] to value [vi].

No duplicate keys may occur. *)
type ('k, 'v) t = ('k * 'v) list
let empty = []
let insert k v m = (k, v) :: List.remove_assoc k m
let lookup k m = List.assoc k m
let bindings m = m

end

module UniqAssocListMap : Map

That implementation removes any duplicate binding of k before inserting a new binding.

7.6.6 Sets

Here is a module type for sets. There are many other operations a set data structure might be expected to support, but
these will suffice for now.

module type Set = sig
(** ['a t] is the type of sets whose elements are of type ['a]. *)
type 'a t

(** [empty] is the empty set. *)
val empty : 'a t

(** [mem x s] is whether [x] is an element of [s]. *)
val mem : 'a -> 'a t -> bool

(** [add x s] is the set that contains [x] and all the elements of [s]. *)
val add : 'a -> 'a t -> 'a t

(** [elements s] is a list containing the elements of [s]. No guarantee
is made about the ordering of that list, but each element is guaranteed
to be unique. *)

val elements : 'a t -> 'a list
end

module type Set =
sig

type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list

end
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Here’s an implementation of that interface using a list to represent the set. This implementation ensures that the list never
contains any duplicate elements, since sets themselves do not:

module UniqListSet : Set = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add x s = if mem x s then s else x :: s
let elements = Fun.id

end

module UniqListSet : Set

Note how add ensures that the representation never contains any duplicates, so the implementation of elements is
easy. Of course, that comes with the tradeoff of add being linear time.
Here’s a second implementation, which permits duplicates in the list:

module ListSet : Set = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add = List.cons
let elements s = List.sort_uniq Stdlib.compare s

end

module ListSet : Set

In that implementation, the add operation is now constant time, and the elements operation is linearithmic time.

7.7 Module Type Constraints

We have extolled the virtues of encapsulation. Now we’re going to do something that might seem counter-intuitive:
selectively violate encapsulation.
As a motivating example, here is a module type that represents values that support the usual addition and multiplication
operations from arithmetic, or more precisely, a ring:

module type Ring = sig
type t
val zero : t
val one : t
val ( + ) : t -> t -> t
val ( * ) : t -> t -> t
val ( ~- ) : t -> t (* additive inverse *)
val to_string : t -> string

end

module type Ring =
sig

type t
val zero : t
val one : t

(continues on next page)
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val ( + ) : t -> t -> t
val ( * ) : t -> t -> t
val ( ~- ) : t -> t
val to_string : t -> string

end

Recall that we must write ( * ) instead of (*) because the latter would be parsed as beginning a comment. And we
write the ~ in ( ~- ) to indicate a unary operator.
This is a bit weird of an example. We don’t normally think of numbers as a data structure. But what is a data structure
except for a set of values and operations on them? The Ring module type makes it clear that’s what we have.
Here is a module that implements that module type:

module IntRing : Ring = struct
type t = int
let zero = 0
let one = 1
let ( + ) = Stdlib.( + )
let ( * ) = Stdlib.( * )
let ( ~- ) = Stdlib.( ~- )
let to_string = string_of_int

end

module IntRing : Ring

Because t is abstract, the toplevel can’t give us good output about what the sum of one and one is:

IntRing.(one + one)

- : IntRing.t = <abstr>

But we could convert it to a string:

IntRing.(one + one |> to_string)

- : string = "2"

We could even install a pretty printer to avoid having to manually call to_string:

let pp_intring fmt i =
Format.fprintf fmt "%s" (IntRing.to_string i);;

#install_printer pp_intring;;

IntRing.(one + one)

val pp_intring : Format.formatter -> IntRing.t -> unit = <fun>

- : IntRing.t = 2

We could implement other kinds of rings, too:
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module FloatRing : Ring = struct
type t = float
let zero = 0.
let one = 1.
let ( + ) = Stdlib.( +. )
let ( * ) = Stdlib.( *. )
let ( ~- ) = Stdlib.( ~-. )
let to_string = string_of_float

end

module FloatRing : Ring

Then we’d have to install a printer for it, too:

let pp_floatring fmt f =
Format.fprintf fmt "%s" (FloatRing.to_string f);;

#install_printer pp_floatring;;

FloatRing.(one + one)

val pp_floatring : Format.formatter -> FloatRing.t -> unit = <fun>

- : FloatRing.t = 2.

Was there really a need to make type t abstract in the ring examples above? Arguably not. And if it were not abstract,
we wouldn’t have to go to the trouble of converting abstract values into strings, or installing printers. Let’s pursue that
idea, next.

7.7.1 Specializing Module Types

In the past, we’ve seen that we can leave off the module type annotation, then do a separate check to make sure the
structure satisfies the signature:

module IntRing = struct
type t = int
let zero = 0
let one = 1
let ( + ) = Stdlib.( + )
let ( * ) = Stdlib.( * )
let ( ~- ) = Stdlib.( ~- )
let to_string = string_of_int

end

module _ : Ring = IntRing

IntRing.(one + one)

- : int = 2

There’s a more sophisticated way of accomplishing the same goal. We can specialize the Ring module type to specify
that t must be int or float. We do that by adding a constraint using the with keyword:
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module type INT_RING = Ring with type t = int

module type INT_RING =
sig

type t = int
val zero : t
val one : t
val ( + ) : t -> t -> t
val ( * ) : t -> t -> t
val ( ~- ) : t -> t
val to_string : t -> string

end

Note how the INT_RING module type now specifies that t and int are the same type. It exposes or shares that fact
with the world, so we could call these “sharing constraints.”
Now IntRing can be given that module type:

module IntRing : INT_RING = struct
type t = int
let zero = 0
let one = 1
let ( + ) = Stdlib.( + )
let ( * ) = Stdlib.( * )
let ( ~- ) = Stdlib.( ~- )
let to_string = string_of_int

end

module IntRing : INT_RING

And since the equality of t and int is exposed, the toplevel can print values of type t without any help needed from a
pretty printer:

IntRing.(one + one)

- : IntRing.t = 2

Programmers can even mix and match built-in int values with those provided by IntRing:

IntRing.(1 + one)

- : IntRing.t = 2

The same can be done for floats:

module type FLOAT_RING = Ring with type t = float

module FloatRing : FLOAT_RING = struct
type t = float
let zero = 0.
let one = 1.
let ( + ) = Stdlib.( +. )

(continues on next page)
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let ( * ) = Stdlib.( *. )
let ( ~- ) = Stdlib.( ~-. )
let to_string = string_of_float

end

module type FLOAT_RING =
sig

type t = float
val zero : t
val one : t
val ( + ) : t -> t -> t
val ( * ) : t -> t -> t
val ( ~- ) : t -> t
val to_string : t -> string

end

module FloatRing : FLOAT_RING

It turns out there’s no need to separately define INT_RING and FLOAT_RING. The with keyword can be used as part
of the module definition, though the syntax becomes a little harder to read because of the proximity of the two = signs:

module FloatRing : Ring with type t = float = struct
type t = float
let zero = 0.
let one = 1.
let ( + ) = Stdlib.( +. )
let ( * ) = Stdlib.( *. )
let ( ~- ) = Stdlib.( ~-. )
let to_string = string_of_float

end

module FloatRing :
sig

type t = float
val zero : t
val one : t
val ( + ) : t -> t -> t
val ( * ) : t -> t -> t
val ( ~- ) : t -> t
val to_string : t -> string

end

7.7.2 Constraints

Syntax.
There are two sorts of constraints. One is the sort we saw above, with type equations:

• T with type x = t, where T is a module type, x is a type name, and t is a type.
The other sort is a module equation, which is syntactic sugar for specifying the equality of all types in the two modules:

• T with module M = N, where M and N are module names.
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Multiple constraints can be added with the and keyword:
• T with constraint1 and constraint2 and ... constraintN

Static semantics.
The constrained module type T with type x = t is the same as T, except that the declaration of type x inside
T is replaced by type x = t. For example, compare the two signatures output below:

module type T = sig type t end
module type U = T with type t = int

module type T = sig type t end

module type U = sig type t = int end

Likewise, T with module M = N is the same as T, except that the any declaration type x inside the module type
of M is replaced by type x = N.x. (And the same recursively for any nested modules.) It takes more work to give
and understand this example:

module type XY = sig
type x
type y

end

module type T = sig
module A : XY

end

module B = struct
type x = int
type y = float

end

module type U = T with module A = B

module C : U = struct
module A = struct

type x = int
type y = float
let x = 42

end
end

module type XY = sig type x type y end

module type T = sig module A : XY end

module B : sig type x = int type y = float end

module type U = sig module A : sig type x = int type y = float end end

module C : U
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Focus on the output for module type U. Notice that the types of x and y in it have become int and float because
of the module A = B constraint. Also notice how modules B and C.A are not the same module; the latter has an
extra item x in it. So the syntax module A = B is potentially confusing. The constraint is not specifying that the two
modules are the same. Rather, it specifies that all their types are constrained to be equal.
Dynamic semantics.
There are no dynamic semantics for constraints, because they are only for type checking.

7.8 Includes

Copying and pasting code is almost always a bad idea. Duplication of code causes duplication and proliferation of errors.
So why are we so prone to making this mistake? Maybe because it always seems like the easier option — easier and
quicker than applying the Abstraction Principle as we should to factor out common code.
The OCaml module system provides a neat feature called includes that is like a principled copy-and-paste that is quick
and easy to use, but avoids actual duplication. It can be used to solve some of the same problems as inheritance in
object-oriented languages.
Let’s start with an example. Recall this implementation of sets as lists:

module type Set = sig
type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list

end

module ListSet : Set = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add = List.cons
let elements s = List.sort_uniq Stdlib.compare s

end

Suppose we wanted to add a function of_list : 'a list -> 'a t that could construct a set out of a list. If we
had access to the source code of both ListSet and Set, and if we were permitted to modify it, this wouldn’t be hard.
But what if they were third-party libraries for which we didn’t have source code?
In Java, we might use inheritance to solve this problem:

interface Set<T> { ... }
class ListSet<T> implements Set<T> { ... }
class ListSetExtended<T> extends ListSet<T> {

Set<T> ofList(List<T> lst) { ... }
}

That helps us to reuse code, because the subclass inherits all the methods of its superclass.
OCaml includes are similar. They enable a module to include all the items defined by another module, or a module type
to include all the specifications of another module type.
Here’s how we can use includes to solve the problem of adding of_list to ListSet:
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module ListSetExtended = struct
include ListSet
let of_list lst = List.fold_right add lst empty

end

module ListSetExtended :
sig

type 'a t = 'a ListSet.t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
val of_list : 'a list -> 'a t

end

This code says that ListSetExtended is a module that includes all the definitions of the ListSet module, as well
as a definition of of_list. We don’t have to know the source code implementing ListSet to make this happen.

Note: You might wonder why we can’t simply implement of_list as the identity function. See the section below on
encapsulation for the answer.

7.8.1 Semantics of Includes

Includes can be used inside of structures and signatures. When we include inside a signature, we must be including another
signature. And when we include inside a structure, we must be including another structure.
Including a structure is effectively just syntactic sugar for writing a local definition for each name defined in the module.
Writing include ListSet as we did above, for example, has an effect similar to writing the following:

module ListSetExtended = struct
(* BEGIN all the includes *)
type 'a t = 'a ListSet.t
let empty = ListSet.empty
let mem = ListSet.mem
let add = ListSet.add
let elements = ListSet.elements
(* END all the includes *)
let of_list lst = List.fold_right add lst empty

end

module ListSetExtended :
sig

type 'a t = 'a ListSet.t
val empty : 'a ListSet.t
val mem : 'a -> 'a ListSet.t -> bool
val add : 'a -> 'a ListSet.t -> 'a ListSet.t
val elements : 'a ListSet.t -> 'a list
val of_list : 'a list -> 'a ListSet.t

end

None of that is actually copying the source code of ListSet. Rather, the include just creates a new definition
in ListSetExtended with the same name as each definition in ListSet. But if the set of names defined inside
ListSet ever changed, the include would reflect that change, whereas a copy-paste job would not.
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Including a signature is much the same. For example, we could write:

module type SetExtended = sig
include Set
val of_list : 'a list -> 'a t

end

module type SetExtended =
sig

type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
val of_list : 'a list -> 'a t

end

Which would have an effect similar to writing the following:

module type SetExtended = sig
(* BEGIN all the includes *)
type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
(* END all the includes *)
val of_list : 'a list -> 'a t

end

module type SetExtended =
sig

type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
val of_list : 'a list -> 'a t

end

That module type would be suitable for ListSetExtended:

module ListSetExtended : SetExtended = struct
include ListSet
let of_list lst = List.fold_right add lst empty

end

module ListSetExtended : SetExtended
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7.8.2 Encapsulation and Includes

We mentioned above that you might wonder why we didn’t write this simpler definition of of_list:

module ListSetExtended : SetExtended = struct
include ListSet
let of_list lst = lst

end

File "[7]", lines 1-4, characters 39-3:
1 | .......................................struct
2 | include ListSet
3 | let of_list lst = lst
4 | end
Error: Signature mismatch:

...
Values do not match:
val of_list : 'a -> 'a

is not included in
val of_list : 'a list -> 'a t

The type 'a list -> 'a list is not compatible with the type
'a list -> 'a t

Type 'a list is not compatible with type 'a t = 'a ListSet.t
File "[5]", line 9, characters 2-31: Expected declaration
File "[7]", line 3, characters 6-13: Actual declaration

Check out that error message. It looks like of_list doesn’t have the right type. What if we try adding some type
annotations?

module ListSetExtended : SetExtended = struct
include ListSet
let of_list (lst : 'a list) : 'a t = lst

end

File "[8]", line 3, characters 39-42:
3 | let of_list (lst : 'a list) : 'a t = lst

^^^
Error: This expression has type 'a list

but an expression was expected of type 'a t = 'a ListSet.t

Ah, now the problem is clearer: in the body of of_list, the equality of 'a t and 'a list isn’t known. In
ListSetExtended, we do know that 'a t = 'a ListSet.t, because that’s what the include gave us. But
the fact that 'a ListSet.t = 'a list was hidden when ListSet was sealed at module type Set. So, includes
must obey encapsulation, just like the rest of the module system.
One workaround is to rewrite the definitions as follows:

module ListSetImpl = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add = List.cons
let elements s = List.sort_uniq Stdlib.compare s

end

(continues on next page)
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(continued from previous page)

module ListSet : Set = ListSetImpl

module type SetExtended = sig
include Set
val of_list : 'a list -> 'a t

end

module ListSetExtendedImpl = struct
include ListSetImpl
let of_list lst = lst

end

module ListSetExtended : SetExtended = ListSetExtendedImpl

module ListSetImpl :
sig

type 'a t = 'a list
val empty : 'a list
val mem : 'a -> 'a list -> bool
val add : 'a -> 'a list -> 'a list
val elements : 'a list -> 'a list

end

module ListSet : Set

module type SetExtended =
sig

type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
val of_list : 'a list -> 'a t

end

module ListSetExtendedImpl :
sig

type 'a t = 'a list
val empty : 'a list
val mem : 'a -> 'a list -> bool
val add : 'a -> 'a list -> 'a list
val elements : 'a list -> 'a list
val of_list : 'a -> 'a

end

module ListSetExtended : SetExtended

The important change is that ListSetImpl is not sealed, so its type 'a t is not abstract. When we include it in
ListSetExtended, we can therefore exploit the fact that it’s a synonym for 'a list.
What we just did is effectively the same as what Java does to handle the visibility modifiers public, private, etc.
The “private version” of a class is like the Impl version above: anyone who can see that version gets to see all the exposed
items (fields in Java, types in OCaml), without any encapsulation. The “public version” of a class is like the sealed version
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above: anyone who can see that version is forced to treat the items as abstract, hence encapsulated.
With that technique, if we want to provide a new implementation of one of the included functions we could do that too:

module ListSetExtendedImpl = struct
include ListSetImpl
let of_list lst = List.fold_right add lst empty
let rec elements = function

| [] -> []
| h :: t -> if mem h t then elements t else h :: elements t

end

module ListSetExtendedImpl :
sig

type 'a t = 'a list
val empty : 'a list
val mem : 'a -> 'a list -> bool
val add : 'a -> 'a list -> 'a list
val of_list : 'a list -> 'a list
val elements : 'a list -> 'a list

end

But that’s a bad idea. First, it’s actually a quadratic implementation of elements instead of linearithmic. Second, it
does not replace the original implementation of elements. Remember the semantics of modules: all definitions are
evaluated from top to bottom, in order. So the new definition of elements above won’t come into use until the very
end of evaluation. If any earlier functions had happened to use elements as a helper, they would use the original
linearithmic version, not the new quadratic version.

Warning: This differs from what you might expect from Java, which uses a language feature called dynamic dispatch
to figure out which method implementation to invoke. Dynamic dispatch is arguably the defining feature of object-
oriented languages. OCaml functions are not methods, and they do not use dynamic dispatch.

7.8.3 Include vs. Open

The include and open statements are quite similar, but they have a subtly different effect on a structure. Consider this
code:

module M = struct
let x = 0

end

module N = struct
include M
let y = x + 1

end

module O = struct
open M
let y = x + 1

end

module M : sig val x : int end
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module N : sig val x : int val y : int end

module O : sig val y : int end

Look closely at the values contained in each structure. N has both an x and y, whereas O has only a y. The reason is that
include M causes all the definitions of M to also be included in N, so the definition of x from M is present in N. But
open M only made those definitions available in the scope of O; it doesn’t actually make them part of the structure. So O
does not contain a definition of x, even though x is in scope during the evaluation of O’s definition of y.
A metaphor for understanding this difference might be: open M imports definitions from M and makes them available
for local consumption, but they aren’t exported to the outside world. Whereas include M imports definitions from M,
makes them available for local consumption, and additionally exports them to the outside world.

7.8.4 Including Code in Multiple Modules

Recall that we also had an implementation of sets that made sure every element of the underlying list was unique:

module UniqListSet : Set = struct
(** All values in the list must be unique. *)
type 'a t = 'a list
let empty = []
let mem = List.mem
let add x s = if mem x s then s else x :: s
let elements = Fun.id

end

module UniqListSet : Set

Suppose we wanted to add of_list to that module too. One possibility would be to copy and paste that function from
ListSet into UniqListSet. But that’s poor software engineering. So let’s rule that out right away as a non-solution.
Instead, suppose we try to define the function outside of either module:

let of_list lst = List.fold_right add lst empty

File "[13]", line 1, characters 34-37:
1 | let of_list lst = List.fold_right add lst empty

^^^
Error: Unbound value add

The problem is we either need to choose which module’s add and empty we want. But as soon as we do, the function
becomes useful only with that one module:

let of_list lst = List.fold_right ListSet.add lst ListSet.empty

val of_list : 'a list -> 'a ListSet.t = <fun>

We could make add and empty be parameters instead:

let of_list' add empty lst = List.fold_right add lst empty

(continues on next page)
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(continued from previous page)

let of_list lst = of_list' ListSet.add ListSet.empty lst
let of_list_uniq lst = of_list' UniqListSet.add UniqListSet.empty lst

val of_list' : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b = <fun>

val of_list : 'a list -> 'a ListSet.t = <fun>

val of_list_uniq : 'a list -> 'a UniqListSet.t = <fun>

But this is annoying in a couple of ways. First, we have to remember which function name to call, whereas all the
other operations that are part of those modules have the same name, regardless of which module they’re in. Second, the
of_list functions live outside either module, so clients who open one of the modules won’t automatically get the ability
to name those functions.
Let’s try to use includes to solve this problem. First, we write a module that contains the parameterized implementation:

module SetOfList = struct
let of_list' add empty lst = List.fold_right add lst empty

end

module SetOfList :
sig val of_list' : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b end

Then we include that module to get the helper function:

module UniqListSetExtended : SetExtended = struct
include UniqListSet
include SetOfList
let of_list lst = of_list' add empty lst

end

module ListSetExtended : SetExtended = struct
include ListSet
include SetOfList
let of_list lst = of_list' add empty lst

end

module UniqListSetExtended : SetExtended

module ListSetExtended : SetExtended

That works, but we’ve only partially succeeded in achieving code reuse:
• On the positive side, the code that implements of_list' has been factored out into a single location and reused
in the two structures.

• But on the negative side, we still had to write an implementation of of_list in both modules. Worse yet, those
implementations are identical. So there’s still code duplication occurring.

Could we do better? Yes. And that leads us to functors, next.
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7.9 Functors

The problemwewere having in the previous section was that we wanted to add code to two different modules, but that code
needed to be parameterized on the details of the module to which it was being added. It’s that kind of parameterization
that is enabled by an OCaml language feature called functors.

Note: Why the name “functor”? In category theory, a category contains morphisms, which are a generalization of
functions as we know them, and a functor is map between categories. Likewise, OCaml modules contain functions, and
OCaml functors map from modules to modules.

The name is unfortunately intimidating, but a functor is simply a “function” from modules to modules. The word
“function” is in quotation marks in that sentence only because it’s a kind of function that’s not interchangeable with the
rest of the functions we’ve already seen. OCaml’s type system is stratified: module values are distinct from other values,
so functions from modules to modules cannot be written or used in the same way as functions from values to values. But
conceptually, functors really are just functions.
Here’s a tiny example of a functor:

module type X = sig
val x : int

end

module IncX (M : X) = struct
let x = M.x + 1

end

module type X = sig val x : int end

module IncX : functor (M : X) -> sig val x : int end

The functor’s name is IncX. It’s essentially a function from modules to modules. As a function, it takes an input and
produces an output. Its input is named M, and the type of its input is X. Its output is the structure that appears on the
right-hand side of the equals sign: struct let x = M.x + 1 end.
Another way to think about IncX is that it’s a parameterized structure. The parameter that it takes is named M and has
type X. The structure itself has a single value named x in it. The value that x has will depend on the parameter M.
Since functors are essentially functions, we apply them. Here’s an example of applying IncX:

module A = struct let x = 0 end

module A : sig val x : int end

A.x

- : int = 0

module B = IncX (A)
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module B : sig val x : int end

B.x

- : int = 1

module C = IncX (B)

module C : sig val x : int end

C.x

- : int = 2

Each time, we pass IncX a module. When we pass it the module bound to the name A, the input to IncX is struct
let x = 0 end. Functor IncX takes that input and produces an output struct let x = A.x + 1 end.
Since A.x is 0, the result is struct let x = 1 end. So B is bound to struct let x = 1 end. Similarly,
C ends up being bound to struct let x = 2 end.
Although the functor IncX returns a module that is quite similar to its input module, that need not be the case. In fact, a
functor can return any module it likes, perhaps something very different than its input structure:

module AddX (M : X) = struct
let add y = M.x + y

end

module AddX : functor (M : X) -> sig val add : int -> int end

Let’s apply that functor to a module. Themodule doesn’t even have to be bound to a name; we can just write an anonymous
structure:

module Add42 = AddX (struct let x = 42 end)

module Add42 : sig val add : int -> int end

Add42.add 1

- : int = 43

Note that the input module to AddX contains a value named x, but the output module from AddX does not:

Add42.x

File "[11]", line 1, characters 0-7:
1 | Add42.x

^^^^^^^
Error: Unbound value Add42.x
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Warning: It’s tempting to think that a functor is the same as extends in Java, and that the functor therefore extends
the input module with new definitions while keeping the old definitions around too. The example above shows that is
not the case. A functor is essentially just a function, and that function can return whatever the programmer wants. In
fact the output of the functor could be arbitrarily different than the input.

7.9.1 Functor Syntax and Semantics

In the functor syntax we’ve been using:

module F (M : S) = ...
end

the type annotation : S and the parentheses around it, (M : S) are required. The reason why is that OCaml needs
the type information about S to be provided in order to do a good job with type inference for F itself.
Much like functions, functors can be written anonymously. The following two syntaxes for functors are equivalent:

module F (M : S) = ...

module F = functor (M : S) -> ...

The second form uses the functor keyword to create an anonymous functor, like how the fun keyword creates an
anonymous function.
And functors can be parameterized on multiple structures:

module F (M1 : S1) ... (Mn : Sn) = ...

Of course, that’s just syntactic sugar for a higher-order functor that takes a structure as input and returns an anonymous
functor:

module F = functor (M1 : S1) -> ... -> functor (Mn : Sn) -> ...

If you want to specify the output type of a functor, the syntax is again similar to functions:

module F (M : Si) : So = ...

As usual, it’s also possible to write the output type annotation on the module expression:

module F (M : Si) = (... : So)

To evaluate an application module_expression1 (module_expression2), the first module expression is
evaluated and must produce a functor F. The second module expression is then evaluated to a module M. The functor is
then applied to the module. The functor will be producing a new module N as part of that application. That new module
is evaluated as always, in order of definition from top to bottom, with the definitions of M available for use.
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7.9.2 Functor Type Syntax and Semantics

The simplest syntax for functor types is actually the same as for functions:

module_type -> module_type

For example, X -> Add below is a functor type, and it works for the AddX module we defined earlier in this section:

module type Add = sig val add : int -> int end
module CheckAddX : X -> Add = AddX

module type Add = sig val add : int -> int end

module CheckAddX : X -> Add

Functor type syntax becomes more complicated if the output module type is dependent upon the input module type. For
example, suppose we wanted to create a functor that pairs up a value from one module with another value:

module type T = sig
type t
val x : t

end

module Pair1 (M : T) = struct
let p = (M.x, 1)

end

module type T = sig type t val x : t end

module Pair1 : functor (M : T) -> sig val p : M.t * int end

The type of Pair1 turns out to be:

functor (M : T) -> sig val p : M.t * int end

So we could also write:

module type P1 = functor (M : T) -> sig val p : M.t * int end

module Pair1 : P1 = functor (M : T) -> struct
let p = (M.x, 1)

end

module type P1 = functor (M : T) -> sig val p : M.t * int end

module Pair1 : P1

Module type P1 is the type of a functor that takes an input module named M of module type T, and returns an output
module whose module type is given by the signature sig..end. Inside the signature, the name M is in scope. That’s
why we can write M.t in it, thereby ensuring that the type of the first component of pair p is the type from the specific
module M that is passed into Pair1, not any other module. For example, here are two different instantiations:
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module P0 = Pair1 (struct type t = int let x = 0 end)
module PA = Pair1 (struct type t = char let x = 'a' end)

module P0 : sig val p : int * int end

module PA : sig val p : char * int end

Note the difference between int and char in the resulting module types. It’s important that the output module type of
Pair1 can distinguish those. And that’s why M has to be nameable on the right-hand side of the arrow in P1.

Note: Functor types are an example of an advanced programming language feature called dependent types, with which
the type of an output is determined by the value of an input. That’s different than the normal case of a function, where
it’s the output value that’s determined by the input value, and the output type is independent of the input value.
Dependent types enable type systems to express much more about the correctness of a program, but type checking and
inference for dependent types is much more challenging. Practical dependent type systems are an active area of research.
Perhaps someday they will become popular in mainstream languages.

The module type of a functor’s actual argument need not be identical to the formal declared module type of the argument;
it’s fine to be a subtype. For example, it’s fine to apply F below to either X or Z. The extra item in Z won’t cause any
difficulty.

module F (M : sig val x : int end) = struct let y = M.x end
module X = struct let x = 0 end
module Z = struct let x = 0;; let z = 0 end
module FX = F (X)
module FZ = F (Z)

module F : functor (M : sig val x : int end) -> sig val y : int end

module X : sig val x : int end

module Z : sig val x : int val z : int end

module FX : sig val y : int end

module FZ : sig val y : int end

7.9.3 The Map Module

The standard library’s Map module implements a map (a binding from keys to values) using balanced binary trees. It uses
functors in an important way. In this section, we study how to use it. You can see the implementation of that module on
GitHub as well as its interface.
The Map module defines a functor Make that creates a structure implementing a map over a particular type of keys.
That type is the input structure to Make. The type of that input structure is Map.OrderedType, which are types that
support a compare operation:
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module type OrderedType = sig
type t
val compare : t -> t -> int

end

module type OrderedType = sig type t val compare : t -> t -> int end

The Map module needs ordering, because balanced binary trees need to be able to compare keys to determine whether
one is greater than another. The compare function’s specification is the same as that for the comparison argument to
List.sort_uniq, which we previously discussed:

• The comparison should return 0 if two keys are equal.
• The comparison should return a strictly negative number if the first key is lesser than the second.
• The comparison should return a strictly positive number if the first key is greater than the second.

Note: Does that specification seem a little strange? Does it seem hard to remember when to return a negative vs. positive
number? Why not define a variant instead?

type order = LT | EQ | GT
val compare : t -> t -> order

Alas, historically many languages have used comparison functions with similar specifications, such as the C standard
library’s strcmp function.

The output of Map.Make supports all the usual operations we would expect from a dictionary:

module type S = sig
type key
type 'a t
val empty: 'a t
val mem: key -> 'a t -> bool
val add: key -> 'a -> 'a t -> 'a t
val find: key -> 'a t -> 'a
...

end

The type variable 'a is the type of values in the map. So any particular map module created by Map.Make can handle
only one type of key, but is not restricted to any particular type of value.

An Example Map

Here’s an example of using the Map.Make functor:

module IntMap = Map.Make(Int)

If you show that output, you’ll see the long module type of IntMap. The Int module is part of the standard library.
Conveniently, it already defines the two items required by OrderedType, which are t and compare, with appropriate
behaviors. The standard library also already defines modules for the other primitive types (String, etc.) that make it
convenient to use any primitive type as a key.
Now let’s try out that map by mapping an int to a string:
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open IntMap;;
let m1 = add 1 "one" empty

val m1 : string IntMap.t = <abstr>

find 1 m1

- : string = "one"

mem 42 m1

- : bool = false

find 42 m1

Exception: Not_found.
Raised at Stdlib__Map.Make.find in file "map.ml", line 137, characters 10-25
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

bindings m1

- : (IntMap.key * string) list = [(1, "one")]

The same IntMap module allows us to map an int to a float:

let m2 = add 1 1. empty

val m2 : float IntMap.t = <abstr>

bindings m2

- : (IntMap.key * float) list = [(1, 1.)]

But the keys must be int, not any other type:

let m3 = add true "one" empty

File "[26]", line 1, characters 13-17:
1 | let m3 = add true "one" empty

^^^^
Error: This expression has type bool but an expression was expected of type

IntMap.key = int
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That’s because the IntMap module was specifically created for keys that are integers and ordered accordingly. Again,
order is crucial, because the underlying data structure is a binary search tree, which requires key comparisons to figure out
where in the tree to store a key. You can even see that in the standard library source code (v4.12), of which the following
is a lightly-edited extract:

module Make (Ord : OrderedType) = struct
type key = Ord.t

type 'a t =
| Empty
| Node of {l : 'a t; v : key; d : 'a; r : 'a t; h : int}

(** Left subtree, key, value/data, right subtree, height of node. *)

let empty = Empty

let rec mem x = function
| Empty -> false
| Node {l, v, r} ->

let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)

...
end

The key type is defined to be a synonym for the type t inside Ord, so key values are comparable using Ord.compare.
The mem function uses that to compare keys and decide whether to recurse on the left subtree or right subtree.
Note how the implementor of Map had a tricky problem to solve: balanced binary search trees require a way to compare
keys, but the implementor can’t know in advance all the different types of keys that a client of the data structure will want
to use. And each type of key might need its own comparison function. Although Stdlib.compare can be used to
compare any two values of the same type, the result it returns isn’t necessarily what a client will want. For example, it’s
not guaranteed to sort names in the way we wanted above.
So the implementor of Map used a functor to solve their problem. They parameterized on a module that bundles together
the type of keys with a function that can be used to compare them. It’s the client’s responsibility to implement that module.
The Java Collections Framework solves a similar problem in the TreeMap class, which has a constructor that takes a
Comparator. There, the client has the responsibility of implementing a class for comparisons, rather than a structure.
Though the language features are different, the idea is the same.

Maps with Custom Key Types

When the type of a key becomes complicated, we might want to write our own custom comparison function. For example,
suppose we want a map in which keys are records representing names, and in which names are sorted alphabetically by
last name then by first name. In the code below, we provide a module Name that can compare records that way:

type name = {first : string; last : string}

module Name = struct
type t = name
let compare { first = first1; last = last1 } { first = first2; last = last2 }

=
match String.compare last1 last2 with
| 0 -> String.compare first1 first2
| c -> c

end
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type name = { first : string; last : string; }

module Name : sig type t = name val compare : name -> name -> int end

The Name module can be used as input to Map.Make because it satisfies the Map.OrderedType signature:

module NameMap = Map.Make (Name)

Now we could use that map to associate names with birth years:

let k1 = {last = "Kardashian"; first = "Kourtney"}
let k2 = {last = "Kardashian"; first = "Kimberly"}
let k3 = {last = "Kardashian"; first = "Khloe"}

let nm =
NameMap.(empty |> add k1 1979 |> add k2 1980 |> add k3 1984)

let lst = NameMap.bindings nm

val k1 : name = {first = "Kourtney"; last = "Kardashian"}

val k2 : name = {first = "Kimberly"; last = "Kardashian"}

val k3 : name = {first = "Khloe"; last = "Kardashian"}

val nm : int NameMap.t = <abstr>

val lst : (NameMap.key * int) list =
[({first = "Khloe"; last = "Kardashian"}, 1984);
({first = "Kimberly"; last = "Kardashian"}, 1980);
({first = "Kourtney"; last = "Kardashian"}, 1979)]

Note how the order of keys in that list is not the same as the order in which we added them. The list is sorted according
to the Name.compare function we wrote. Several of the other functions in the Map.S signature will also process map
bindings in that sorted order—for example, map, fold, and iter.

How Map Uses Module Type Constraints

In the standard library’s map.mli interface, the specification for Map.Make is:

module Make (Ord : OrderedType) : S with type key = Ord.t

The with constraint there is crucial. Recall that type constraints specialize a module type. Here, S with type key
= Ord.t specializes S to expose the equality of S.key and Ord.t. In other words, the type of keys is the ordered
type.
You can see the effect of that sharing constraint by looking at the module type of our IntMap example from before. The
sharing constraint is what caused the = Int.t to be present:
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module IntMap : sig
type key = Int.t
...

end

And the Int module contains this line:

type t = int

So IntMap.key = Int.t = int, which is exactly why we’re allowed to pass an int to the add and mem functions
of IntMap.
Without the type constraint, type key would have remained abstract. We can simulate that by adding a module type
annotation of Map.S, thereby resealing the module at that type without exposing the equality:

module UnusableMap = (IntMap : Map.S);;

module UnusableMap : Map.S

Now it’s impossible to add a binding to the map:

let m = UnusableMap.(empty |> add 0 "zero")

File "[31]", line 1, characters 34-35:
1 | let m = UnusableMap.(empty |> add 0 "zero")

^
Error: This expression has type int but an expression was expected of type

UnusableMap.key

This kind of use case is whymodule type constraints are quite important in effective programming with the OCamlmodule
system. Often it is necessary to specialize the output type of a functor to show a relationship between a type in it and a
type in one of the functor’s inputs. Thinking through exactly what constraint is necessary can be challenging, though!

7.9.4 Using Functors

With Map we saw one use case for functors: producing a data structure that was parameterized on a client-provided
ordering. Here are two more use cases.

Test Suites

Here are two implementations of a stack:

exception Empty

module type Stack = sig
type 'a t
val empty : 'a t
val push : 'a -> 'a t -> 'a t
val peek : 'a t -> 'a
val pop : 'a t -> 'a t

end

(continues on next page)
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(continued from previous page)

module ListStack = struct
type 'a t = 'a list
let empty = []
let push = List.cons
let peek = function [] -> raise Empty | x :: _ -> x
let pop = function [] -> raise Empty | _ :: s -> s

end

module VariantStack = struct
type 'a t = E | S of 'a * 'a t
let empty = E
let push x s = S (x, s)
let peek = function E -> raise Empty | S (x, _) -> x
let pop = function E -> raise Empty | S (_, s) -> s

end

Suppose we wanted to write an OUnit test for ListStack:

let test = "peek (push x empty) = x" >:: fun _ ->
assert_equal 1 ListStack.(empty |> push 1 |> peek)

Unfortunately, to test a VariantStack, we’d have to duplicate that code:

let test' = "peek (push x empty) = x" >:: fun _ ->
assert_equal 1 VariantStack.(empty |> push 1 |> peek)

And if we had other stack implementations, we’d have to duplicate the test for them, too. That’s not so horrible to contem-
plate if it’s just one test case for a couple implementations, but if it’s hundreds of tests for even a couple implementations,
that’s just too much duplication to be good software engineering.
Functors offer a better solution. We can write a functor that is parameterized on the stack implementation, and produces
the test for that implementation:

module StackTester (S : Stack) = struct
let tests = [

"peek (push x empty) = x" >:: fun _ ->
assert_equal 1 S.(empty |> push 1 |> peek)

]
end

module ListStackTester = StackTester (ListStack)
module VariantStackTester = StackTester (VariantStack)

let all_tests = List.flatten [
ListStackTester.tests;
VariantStackTester.tests

]

Now whenever we invent a new test we add it to StackTester, and it automatically gets run on both stack implemen-
tations. Nice!
There is still some objectionable code duplication, though, in that we have to write two lines of code per implementation.
We can eliminate that duplication through the use of first-class modules:
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let stacks = [ (module ListStack : Stack); (module VariantStack) ]

let all_tests =
let tests m =

let module S = (val m : Stack) in
let module T = StackTester (S) in
T.tests

in
let open List in
stacks |> map tests |> flatten

Now it suffices just to add the newest stack implementation to the stacks list. Nicer!

Extending Multiple Modules

Earlier, we tried to add a function of_list to both ListSet and UniqListSet without having any duplicated
code, but we didn’t totally succeed. Now let’s really do it right.
The problem we had earlier was that we needed to parameterize the implementation of of_list on the add function
and empty value in the set module. We can accomplish that parameterization with a functor:

module type Set = sig
type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list

end

module SetOfList (S : Set) = struct
let of_list lst = List.fold_right S.add lst S.empty

end

Notice how the functor, in its body, uses S.add. It takes the implementation of add from S and uses it to implement
of_list (and the same for empty), thus solving the exact problem we had before when we tried to use includes.
When we apply SetOfList to our set implementations, we get modules containing an of_list function for each
implementation:

module ListSet : Set = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add = List.cons
let elements s = List.sort_uniq Stdlib.compare s

end

module UniqListSet : Set = struct
(** All values in the list must be unique. *)
type 'a t = 'a list
let empty = []
let mem = List.mem
let add x s = if mem x s then s else x :: s
let elements = Fun.id

end
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module OfList = SetOfList (ListSet)
module UniqOfList = SetOfList (UniqListSet)

module OfList : sig val of_list : 'a list -> 'a ListSet.t end

module UniqOfList : sig val of_list : 'a list -> 'a UniqListSet.t end

The functor has enabled the code reuse we couldn’t get before: we now can implement a single of_list function and
from it derive implementations for two different sets.
But that’s the only function those two modules contain. Really what we want is a full set implementation that also contains
the of_list function. We can get that by combining includes with functors:

module SetWithOfList (S : Set) = struct
include S
let of_list lst = List.fold_right S.add lst S.empty

end

module SetWithOfList :
functor (S : Set) ->

sig
type 'a t = 'a S.t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
val of_list : 'a list -> 'a S.t

end

That functor takes a set as input, and produces a module that contains everything from that set (because of the include)
as well as a new function of_list.
When we apply the functor, we get a very nice set module:

module SetL = SetWithOfList (ListSet)
module UniqSetL = SetWithOfList (UniqListSet)

module SetL :
sig

type 'a t = 'a ListSet.t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t
val elements : 'a t -> 'a list
val of_list : 'a list -> 'a ListSet.t

end

module UniqSetL :
sig

type 'a t = 'a UniqListSet.t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val add : 'a -> 'a t -> 'a t

(continues on next page)
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(continued from previous page)

val elements : 'a t -> 'a list
val of_list : 'a list -> 'a UniqListSet.t

end

Notice how the output structure records the fact that its type t is the same type as the type t in its input structure. They
share it because of the include.
Stepping back, what we just did bears more than a passing resemblance to class extension in Java. We created a base
module and extended its functionality with new code while preserving its old functionality. But whereas class extension
necessitates that the newly extended class is a subtype of the old, and that it still has all the old functionality, OCaml
functors are more fine-grained in what they can accomplish. We can choose whether they include the old functionality.
And no subtyping relationships are necessarily involved. Moreover, the functor we wrote can be used to extend any set
implementation with of_list, whereas class extension applies to just a single base class. There are ways of achieving
something similar in object-oriented languages withmixins, which enable a class to re-use functionality from other classes
without necessitating the complication of multiple inheritance.

7.10 Summary

The OCaml module system provides mechanisms for modularity that provide the similar capabilities as mechanisms
you will have seen in other languages. But seeing those mechanisms appear in different ways is hopefully helping you
understand them better. OCaml abstract types and signatures, for example, provide a mechanism for abstraction that
resembles Java visibilitymodifiers and interfaces. Seeing the same idea embodied in two different languages, but expressed
in rather different ways, will hopefully help you recognize that idea when you encounter it in other languages in the future.
Moreover, the idea that a type could be abstract is a foundational notion in programming language design. The OCaml
module system makes that idea brutally apparent. Other languages like Java obscure it a bit by coupling it together with
many other features all at once. There’s a sense in which every Java class implicitly defines an abstract type (actually,
four abstract types that are related by subtyping, one for each visibility modifier [public, protected, private,
and default]), and all the methods of the class are functions on that abstract type.
Functors are an advanced language feature in OCaml that might seem mysterious at first. If so, keep in mind: they’re
really just a kind of function that takes a structure as input and returns a structure as output. The reason they don’t behave
quite like normal OCaml functions is that structures are not first-class values in OCaml: you can’t write regular functions
that take a structure as input or return a structure as output. But functors can do just that.
Functors and includes enable code reuse. The kinds of code reuse that object-oriented features enable can also be achieved
with functors and include. That’s not to say that functors and includes are exactly equivalent to those object-oriented
features: some kinds of code reuse might be easier to achieve with one set of features than the other.
One way to think about this might be that class extension is a very limited, but very useful, combination of functors and
includes. Extending a class is like writing a functor that takes the base class as input, includes it, then adds new functions.
But functors provide more general capability than class extension, because they can compute arbitrary functions of their
input structure, rather than being limited to just certain kinds of extension.
Perhaps the most important idea to get out of studying the OCaml module system is an appreciation for the aspects of
modularity that transcend any given language: namespaces, abstraction, and code reuse. Having seen those ideas in a
couple very different languages, you’re equipped to recognize them more clearly in the next language you learn.
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7.10.1 Terms and Concepts

• abstract type
• abstraction
• client
• code reuse
• compilation unit
• declaration
• definition
• encapsulation
• ephemeral data structure
• functional data structure
• functor
• implementation
• implementer
• include
• information hiding
• interface
• local reasoning
• maintainability
• maps
• modular programming
• modularity
• module
• module type
• namespace
• open
• parameterized structure
• persistent data structure
• representation type
• scope
• sealed
• set representations
• sharing constraints
• signature
• signature matching
• specification
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• structure

7.10.2 Further Reading

• Introduction to Objective Caml, chapters 11, 12, and 13
• OCaml from the Very Beginning, chapter 16
• Real World OCaml, chapters 4, 9, and 10
• Purely Functional Data Structures, chapters 1 and 2, by Chris Okasaki.
• “Design Considerations for ML-Style Module Systems” by Robert Harper and Benjamin C. Pierce, chapter 8 of

Advanced Topics in Types and Programming Languages, ed. Benjamin C. Pierce, MIT Press, 2005. An advanced
treatment of the static semantics of modules.

7.11 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: complex synonym [★]
Here is a module type for complex numbers, which have a real and imaginary component:

module type ComplexSig = sig
val zero : float * float
val add : float * float -> float * float -> float * float

end

Improve that code by adding type t = float * float. Show how the signature can be written more tersely
because of the type synonym.

Exercise: complex encapsulation [★★]
Here is a module for the module type from the previous exercise:

module Complex : ComplexSig = struct
type t = float * float
let zero = (0., 0.)
let add (r1, i1) (r2, i2) = r1 +. r2, i1 +. i2

end

Investigate what happens if you make the following changes (each independently), and explain why any errors arise:
• remove zero from the structure
• remove add from the signature
• change zero in the structure to let zero = 0, 0
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Exercise: big list queue [★★]
Use the following code to create ListQueue of exponentially increasing length: 10, 100, 1000, etc. How big of a queue
can you create before there is a noticeable delay? How big until there’s a delay of at least 10 seconds? (Note: you can
abort utop computations with Ctrl-C.)

(** Creates a ListQueue filled with [n] elements. *)
let fill_listqueue n =

let rec loop n q =
if n = 0 then q
else loop (n - 1) (ListQueue.enqueue n q) in

loop n ListQueue.empty

Exercise: big batched queue [★★]
Use the following function to create BatchedQueue of exponentially increasing length:

let fill_batchedqueue n =
let rec loop n q =
if n = 0 then q
else loop (n - 1) (BatchedQueue.enqueue n q) in

loop n BatchedQueue.empty

Now how big of a queue can you create before there’s a delay of at least 10 seconds?

Exercise: queue efficiency [★★★]
Compare the implementations of enqueue in ListQueue vs. BatchedQueue. Explain in your own words why
the efficiency of ListQueue.enqueue is linear time in the length of the queue. Hint: consider the @ operator. Then
explain why adding 𝑛 elements to the queue takes time that is quadratic in 𝑛.
Now consider BatchedQueue.enqueue. Suppose that the queue is in a state where it has never had any elements
dequeued. Explain in your own words why BatchedQueue.enqueue is constant time. Then explain why adding 𝑛
elements to the queue takes time that is linear in 𝑛.

Exercise: binary search tree map [★★★★]
Write a module BstMap that implements the Mapmodule type using a binary search tree type. Binary treeswere covered
earlier when we discussed algebraic data types. A binary search tree (BST) is a binary tree that obeys the following BST
Invariant:

For any node n, every node in the left subtree of n has a value less than n’s value, and every node in the right
subtree of n has a value greater than n’s value.

Your nodes should store pairs of keys and values. The keys should be ordered by the BST Invariant. Based on that
invariant, you will always know whether to look left or right in a tree to find a particular key.

Exercise: fraction [★★★]
Write a module that implements the Fraction module type below:
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module type Fraction = sig
(* A fraction is a rational number p/q, where q != 0. *)
type t

(** [make n d] represents n/d, a fraction with
numerator [n] and denominator [d].
Requires d <> 0. *)

val make : int -> int -> t

val numerator : t -> int
val denominator : t -> int
val to_string : t -> string
val to_float : t -> float

val add : t -> t -> t
val mul : t -> t -> t

end

Exercise: fraction reduced [★★★]
Modify your implementation of Fraction to ensure these invariants hold for every value v of type t that is returned
from make, add, and mul:

1. v is in reduced form

2. the denominator of v is positive
For the first invariant, you might find this implementation of Euclid’s algorithm to be helpful:

(** [gcd x y] is the greatest common divisor of [x] and [y].
Requires: [x] and [y] are positive. *)

let rec gcd x y =
if x = 0 then y
else if (x < y) then gcd (y - x) x
else gcd y (x - y)

Exercise: make char map [★]
To create a standard library map, we first have to use the Map.Make functor to produce a module that is specialized for
the type of keys we want. Type the following in utop:

# module CharMap = Map.Make(Char);;

The output tells you that a new module named CharMap has been defined, and it gives you a signature for it. Find the
values empty, add, and remove in that signature. Explain their types in your own words.

Exercise: char ordered [★]
The Map.Make functor requires its input module to match the Map.OrderedType signature. Look at that signature
as well as the signature for the Charmodule. Explain in your own words why we are allowed to pass Char as an argument
to Map.Make.

Exercise: use char map [★★]
Using the CharMap you just made, create a map that contains the following bindings:

7.11. Exercises 243

https://en.wikipedia.org/wiki/Irreducible_fraction
https://ocaml.org/api/Map.OrderedType.html
https://ocaml.org/api/Char.html


OCaml Programming: Correct + Efficient + Beautiful

• 'A' maps to "Alpha"
• 'E' maps to "Echo"
• 'S' maps to "Sierra"
• 'V' maps to "Victor"

Use CharMap.find to find the binding for 'E'.
Now remove the binding for 'A'. Use CharMap.mem to find whether 'A' is still bound.
Use the function CharMap.bindings to convert your map into an association list.

Exercise: bindings [★★]
Investigate the documentation of theMap.S signature to find the specification ofbindings. Which of these expressions
will return the same association list?

1. CharMap.(empty |> add 'x' 0 |> add 'y' 1 |> bindings)

2. CharMap.(empty |> add 'y' 1 |> add 'x' 0 |> bindings)

3. CharMap.(empty |> add 'x' 2 |> add 'y' 1 |> remove 'x' |> add 'x' 0 |>
bindings)

Check your answer in utop.

Exercise: date order [★★]
Here is a type for dates:

type date = {month : int; day : int}

For example, March 31st would be represented as {month = 3; day = 31}. Our goal in the next few exercises is
to implement a map whose keys have type date.
Obviously it’s possible to represent invalid dates with type date—for example, { month=6; day=50 } would be
June 50th, which is not a real date. The behavior of your code in the exercises below is unspecified for invalid dates.
To create a map over dates, we need a module that we can pass as input to Map.Make. That module will need to match
the Map.OrderedType signature. Create such a module. Here is some code to get you started:

module Date = struct
type t = date
let compare ...

end

Recall the specification of compare in Map.OrderedType as you write your Date.compare function.

Exercise: calendar [★★]
Use the Map.Make functor with your Date module to create a DateMap module. Then define a calendar type as
follows:

type calendar = string DateMap.t
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The idea is that calendar maps a date to the name of an event occurring on that date.
Using the functions in the DateMapmodule, create a calendar with a few entries in it, such as birthdays or anniversaries.

Exercise: print calendar [★★]
Write a function print_calendar : calendar -> unit that prints each entry in a calendar in a format
similar to the inspiring examples in the previous exercise. Hint: use DateMap.iter, which is documented in the Map.
S signature.

Exercise: is for [★★★]
Write a function is_for : string CharMap.t -> string CharMap.t that given an input map with
bindings from 𝑘1 to 𝑣1, …, 𝑘𝑛 to 𝑣𝑛, produces an output map with the same keys, but where each key 𝑘𝑖 is now bound to
the string “𝑘𝑖 is for 𝑣𝑖”. For example, if m maps 'a' to "apple", then is_for m would map 'a' to "a is for
apple". Hint: there is a one-line solution that uses a function from the Map.S signature. To convert a character to a
string, you could use String.make. An even fancier way would be to use Printf.sprintf.

Exercise: first after [★★★]
Write a function first_after : calendar -> Date.t -> string that returns the name of the first event
that occurs strictly after the given date. If there is no such event, the function should raise Not_found, which is an
exception already defined in the standard library. Hint: you can do this in one-line by using a function or two from the
Map.S signature.

Exercise: sets [★★★]
The standard library Set module is quite similar to the Map module. Use it to create a module that represents sets of
case-insensitive strings. Strings that differ only in their case should be considered equal by the set. For example, the sets
{“grr”, “argh”} and {“aRgh”, “GRR”} should be considered the same, and adding “gRr” to either set should not change
the set.

Exercise: ToString [★★]
Write a module type ToString that specifies a signature with an abstract type t and a function to_string : t
-> string.

Exercise: Print [★★]
Write a functor Print that takes as input a module named M of type ToString. The module returned by your func-
tor should have exactly one value in it, print, which is a function that takes a value of type M.t and prints a string
representation of that value.

Exercise: Print Int [★★]
Create a module named PrintInt that is the result of applying the functor Print to a new module Int. You will
need to write Int yourself. The type Int.t should be int. Hint: do not seal Int.

Experiment with PrintInt in utop. Use it to print the value of an integer.
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Exercise: Print String [★★]
Create a module named PrintString that is the result of applying the functor Print to a new module MyString.
You will need to write MyString yourself. Hint: do not seal MyString.

Experiment with PrintString in utop. Use it to print the value of a string.

Exercise: Print Reuse [★]
Explain in your own words how Print has achieved code reuse, albeit a very small amount.

Exercise: Print String reuse revisited [★★]
The PrintStringmodule you created above supports just one operation: print. It would be great to have a module
that supports all the Stringmodule functions in addition to that print operation, and it would be super great to derive
such a module without having to copy any code.
Define a module StringWithPrint. It should have all the values of the built-in Stringmodule. It should also have
the print operation, which should be derived from the Print functor rather than being copied code. Hint: use two
include statements.

Exercise: implementation without interface [★]
Create a file named date.ml. In it put the following code:

type date = {month : int; day : int}
let make_date month day = {month; day}
let get_month d = d.month
let get_day d = d.day
let to_string d = (string_of_int d.month) ^ "/" ^ (string_of_int d.day)

Also create a dune file:

(library
(name date))

Load the library into utop:

$ dune utop

In utop, open Date, create a date, access its day, and convert it to a string.

Exercise: implementation with interface [★]
After doing the previous exercise, also create a file named date.mli. In it put the following code:

type date = {month : int; day : int}
val make_date : int -> int -> date
val get_month : date -> int
val get_day : date -> int
val to_string : date -> string
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Then re-do the same work as before in utop.

Exercise: implementation with abstracted interface [★]
After doing the previous two exercises, edit date.mli and change the first declaration in it to the following:

type date

The type date is now abstract. Again re-do the same work in utop. Some of the responses will change. Explain in your
own words those changes.

Exercise: printer for date [★★★]
Add a declaration to date.mli:

val format : Format.formatter -> date -> unit

And add a definition of format to date.ml. Hint: use Format.fprintf and Date.to_string.

Now recompile, load utop, and after loading date.cmo install the printer by issuing the directive

#install_printer Date.format;;

Reissue the other phrases to utop as you did in the exercises above. The response from one phrase will change in a helpful
way. Explain why.

Exercise: refactor arith [★★★★]
Download this file: algebra.ml. It contains these signatures and structures:

• Ring is signature that describes the algebraic structure called a ring, which is an abstraction of the addition and
multiplication operators.

• Field is a signature that describes the algebraic structure called a field, which is like a ring but also has an
abstraction of the division operation.

• IntRing and FloatRing are structures that implement rings in terms of int and float.
• IntField and FloatField are structures that implement fields in terms of int and float.
• IntRational and FloatRational are structures that implement fields in terms of ratios (aka fractions)—
that is, pairs of int and pairs of float.

Note: Dear fans of abstract algebra: of course these representations don’t necessarily obey all the axioms of rings and
fields because of the limitations of machine arithmetic. Also, the division operation in IntField is ill-defined on zero.
Try not to worry about that.

Refactor the code to improve the amount of code reuse it exhibits. To do that, use include, functors, and introduce
additional structures and signatures as needed. There isn’t necessarily a right answer here, but here’s some advice:

• No name should be directly declared in more than one signature. For example, ( + ) should not be directly
declared in Field; it should be reused from an earlier signature. By “directly declared” we mean a declaration of
the form val name : .... An indirect declaration would be one that results from an include.
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• You need only three direct definitions of the algebraic operations and numbers (plus, minus, times, divide, zero,
one): once for int, once for float, and once for ratios. For example, IntField.( + ) should not be directly
defined as Stdlib.( + ); rather, it should be reused from elsewhere. By “directly defined” we mean a definition
of the form let name = .... An indirect definition would be one that results from an include or a functor
application.

• The rational structures can both be produced by a single functor that is applied once to IntRing and once to
FloatRing.

• It’s possible to eliminate all duplication of of_int, such that it is directly defined exactly once, and all structures
reuse that definition; and such that it is directly declared in only one signature. This will require the use of functors.
It will also require inventing an algorithm that can convert an integer to an arbitrary Ring representation, regardless
of what the representation type of that Ring is.

When you’re done, the types of all the modules should remain unchanged. You can easily see those types by running
ocamlc -i algebra.ml.

248 Chapter 7. Modular Programming



Part IV

Correctness and Efficiency

249





CHAPTER

EIGHT

CORRECTNESS

When we write code, we always hope that we get it right. We hope that our code is correct. But how can we know it’s
correct? In this chapter, we’ll study three possible answers: documentation, testing, and proof.
Let’s be honest: we all at one time or another have thought that documentation or testing was a boring, tedious, and
altogether postponable task. But with maturity programmers come to realize that both are essential to writing correct
code. Both get at the truth of what code really does.
Documentation is the ground truth of what a programmer intended, as opposed to what they actually implemented. It
communicates to other humans the ideas the author had in their head. No small amount of the time (even in this book!),
we fail at communicating ideas as we intended. Maybe the failure occurs in the code, or maybe in the documentation. But
writing documentation forces us to think a second (er, hopefully second) time about our intentions. The cognitive task
of explaining our ideas to other humans is certainly different than explaining our ideas to the computer. That can expose
failures in our thinking.
More importantly, documentation is a message in a time capsule. Imagine this: someone far away and now unreachable
has sent that message to you, the programmer. You need that message to interpret the archeological evidence now in front
of you—i.e., the otherwise unintelligible source code you have inherited. Your only hope is that the original author, long
ago, had enough empathy to commit their thoughts to the written word.
And now imagine this: that author from the distant past? What if they were YOU? It might be you from two weeks ago,
two months ago, or two years ago. Human memory is fleeting. If you’ve only been programming for a couple of years
yourself, this can be difficult to understand, but give it a generous try: Someday, you’re going to come back to the code
you’re writing today and have no clue what it means. Your only hope is to leave yourself some breadcrumbs at the time
you write it. Otherwise, you’ll be lost when you circle back.
Testing is the ground truth of what a program actually does, as opposed to what the programmer intended. It provides
evidence that the programmer got it right. Good scientists demand evidence. That demand comes not out of arrogance
but humility. We human beings are so amazingly good at deluding ourselves. (Consider the echo chamber of modern
social media.) You can write a piece of code that you think is right. But then you can write a test case that demonstrates
it’s right. Then you can write ten more. The evidence accumulates, and eventually it’s enough to be convincing. Is it
absolute? Of course not. Maybe there’s some test case you weren’t clever enough to invent. That’s science: new ideas
come along to challenge the old.
Even more importantly, testing is repeatable science. The ability to replicate experiments is crucial to the truth they
establish. By capturing tests as automatically repeatable experiments as unit test suites, we can demonstrate to ourselves
and other, now and in the future, that our code is correct. Furthermore, it ensures the code remains correct over time,
even as changes are made — whether by others or by ourselves.
The challenge of documentation and testing is discipline. It’s so tempting, so easy, to care only about writing the code.
“That’s the fun part”, right? But it’s like leaving out a third of the letter we intended to write. One part of the letter is to
the machine, regarding how to compute. But another part is to other humans, about what we wanted to compute. And
another part is to both machines and humans, about what we really did manage to compute. Your job isn’t done until all
three parts have been written.
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If you’re not yet convinced about the importance of documentation and testing, no worries. You will be in the future, if
you stick with the craft of programming long enough. Meanwhile, let’s proceed with learning about how to do it better.
In this chapter, we’re going to learn about some successful (and hopefully new-to-you) techniques for both.
Finally, beyond documentation and testing, there ismathematical proof of correctness. Techniques from logic and discrete
math can be used to formally prove that a program is correct according to a specification. Such proofs aren’t necessarily
easy—in fact they take even more human discipline and training than documentation and testing do. But they can make
sense to apply when programs are used for safety critical tasks where human lives are on the line.

8.1 Specifications

A specification is a contract between a client of some unit of code and the implementer of that code. The most common
place we find specifications is as comments in the interface (.mli) files for a module. There, the implementer of the
module spells out what the client may and may not assume about the module’s behavior. This contract makes it clear who
to blame if something goes wrong: Did the client misuse the module? Or did the implementer fail to deliver the promised
functionality?
Specifications usually involve preconditions and postconditions. The preconditions inform what the client must guarantee
about inputs they pass in, and what the implementer may assume about those inputs. The postconditions inform what the
client may assume about outputs they receive, and what the implementer must guarantee about those outputs.
An implementation satisfies a specification if it provides the behavior described by the specification. There may be many
possible implementations of a given specification that are feasible. The client may not assume anything about which of
those implementations is actually provided. The implementer, on the other hand, gets to provide one of their choice.
Clear specifications servemany important functions in software development teams. One important one is when something
goes wrong, everyone can agree on whose job it is to fix the problem: either the implementer has not met the specification
and needs to fix the implementation, or the client has written code that assumes something not guaranteed by the spec,
and therefore needs to fix the using code. Or, perhaps the spec is wrong, and then the client and implementer need to
decide on a new spec. This ability to decide whose problem a bug is prevents problems from slipping through the cracks.
Writing Specifications. Good specifications have to balance two conflicting goals; they must be

• sufficiently restrictive, ruling out implementations that would be useless to clients, as well as
• sufficiently general, not ruling out implementations that would be useful to clients.

Some common mistakes include not stating enough in preconditions, failing to identify when exceptions will be thrown,
failing to specify behavior at boundary cases, writing operational specifications instead of definitional and stating too much
in postconditions.
Writing good specifications is hard because the language and compiler do nothing to check the correctness of a spec-
ification: there’s no type system for them, no warnings, etc. (Though there is ongoing research on how to improve
specifications and the writing of them.) The specifications you write will be read by other people, and with that reading
can come misunderstanding. Reading specifications requires close attention to detail.
Specifications should be written quite early. As soon as a design decision is made, document it in a specification. Specifi-
cations should continue to be updated throughout implementation. A specification becomes obsolete only when the code
it specifies becomes obsolete and is removed from the code base.
Abstraction by Specification. Abstraction enables modular programming by hiding the details of implementations.
Specifications are a part of that kind of abstraction: they reveal certain information about the behavior of a module
without disclosing all the details of the module’s implementation.
Locality is one of the benefits of abstraction by specification. A module can be understood without needing to examine
its implementation. This locality is critical in implementing large programs, and even in implementing smaller programs
in teams. No one person can keep the entire system in their head at a time.
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Modifiability is another benefit. Modules can be reimplemented without changing the implementation of other modules
or functions. Software libraries depend upon this to improve their functionality without forcing all their clients to rewrite
code every time the library is upgraded. Modifiability also enables performance enhancements: we can write simple, slow
implementations first, then improve bottlenecks as necessary.
The client should not assume more about the implementation than is given in the spec because that allows the implemen-
tation to change. The specification forms an abstraction barrier that protects the implementer from the client and vice
versa. Making assumptions about the implementation that are not guaranteed by the specification is known as violating
the abstraction barrier. The abstraction barrier enforces local reasoning. Further, it promotes loose coupling between
different code modules. If one module changes, other modules are less likely to have to change to match.

8.2 Function Documentation

This section continues the discussion of documentation, which we began in chapter 2.

A specification is written for humans to read, not machines. “Specs” can take time to write well, and it is time well spent.
The main goal is clarity. It is also important to be concise, because client programmers will not always take the effort to
read a long spec. As with anything we write, we need to be aware of our audience when writing specifications. Some
readers may need a more verbose specification than others.
A well-written specification usually has several parts communicating different kinds of information about the thing spec-
ified. If we know what the usual ingredients of a specification are, we are less likely to forget to write down something
important. Let’s now look at a recipe for writing specifications.

8.2.1 Returns Clause

How might we specify sqr, a square-root function? First, we need to describe its result. We will call this description
the returns clause because it is a part of the specification that describes the result of a function call. It is also known as a
postcondition: it describes a condition that holds after the function is called. Here is an example of a returns clause:

(** Returns: [sqr x] is the square root of [x]. *)

But we would typically leave out the returns:, and simply write the returns clause as the first sentence of the comment:

(** [sqr x] is the square root of [x]. *)

For numerical programming, we should probably add some information about how accurate it is.

(** [sqr x] is the square root of [x]. Its relative accuracy is no worse than
[1.0e-6]. *)

Similarly, here’s how we might write a returns clause for a find function:

(** [find lst x] is the index of [x] in [lst], starting from zero. *)

A good specification is concise but clear—it should say enough that the reader understands what the function does, but
without extra verbiage to plow through and possibly cause the reader to miss the point. Sometimes there is a balance to
be struck between brevity and clarity.
These two specifications use a useful trick to make them more concise: they talk about the result of applying the function
being specified to some arbitrary arguments. Implicitly we understand that the stated postcondition holds for all possible
values of any unbound variables (the argument variables).
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8.2.2 Requires Clause

The specification for sqr doesn’t completely make sense because the square root does not exist for some x of type real.
The mathematical square root function is a partial function that is defined over only part of its domain. A good function
specification is complete with respect to the possible inputs; it provides the client with an understanding of what inputs
are allowed and what the results will be for allowed inputs.
We have several ways to deal with partial functions. A straightforward approach is to restrict the domain so that it is clear
the function cannot be legitimately used on some inputs. The specification rules out bad inputs with a requires clause
establishing when the function may be called. This clause is also called a precondition because it describes a condition
that must hold before the function is called. Here is a requires clause for sqr:

(** [sqr x] is the square root of [x]. Its relative accuracy is no worse
than [1.0e-6]. Requires: [x >= 0]. *)

This specification doesn’t say what happens when x < 0, nor does it have to. Remember that the specification is a
contract. This contract happens to push the burden of showing that the square root exists onto the client. If the requires
clause is not satisfied, the implementation is permitted to do anything it likes: for example, go into an infinite loop or throw
an exception. The advantage of this approach is that the implementer is free to design an algorithm without the constraint
of having to check for invalid input parameters, which can be tedious and slow down the program. The disadvantage is
that it may be difficult to debug if the function is called improperly, because the function can misbehave and the client
has no understanding of how it might misbehave.

8.2.3 Raises Clause

Another way to deal with partial functions is to convert them into total functions (functions defined over their entire
domain). This approach is arguably easier for the client to deal with because the function’s behavior is always defined; it
has no precondition. However, it pushes work onto the implementer and may lead to a slower implementation.
How can we convert sqr into a total function? One approach that is (too) often followed is to define some value that is
returned in the cases that the requires clause would have ruled out; for example:

(** [sqr x] is the square root of [x] if [x >= 0],
with relative accuracy no worse than 1.0e-6.
Otherwise, a negative number is returned. *)

This practice is not recommended because it tends to encourage broken, hard-to-read client code. Almost any correct
client of this abstraction will write code like this if the precondition cannot be argued to hold:

if sqr(a) < 0.0 then ... else ...

The error must still be handled in the if expression, so the job of the client of this abstraction isn’t any easier than with
a requires clause: the client still needs to wrap an explicit test around the call in cases where it might fail. If the test is
omitted, the compiler won’t complain, and the negative number result will be silently treated as if it were a valid square
root, likely causing errors later during program execution. This coding style has been the source of innumerable bugs and
security problems in the Unix operating systems and its descendents (e.g., Linux).
A better way to make functions total is to have them raise an exception when the expected input condition is not met.
Exceptions avoid the necessity of distracting error-handling logic in the client’s code. If the function is to be total, the
specification must say what exception is raised and when. For example, we might make our square root function total as
follows:

(** [sqr x] is the square root of [x], with relative accuracy no worse
than 1.0e-6. Raises: [Negative] if [x < 0]. *)
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Note that the implementation of this sqr function must check whether x >= 0, even in the production version of the
code, because some client may be relying on the exception to be raised.

8.2.4 Examples Clause

It can be useful to provide an illustrative example as part of a specification. No matter how clear and well written the
specification is, an example is often useful to clients.

(** [find lst x] is the index of [x] in [lst], starting from zero.
Example: [find ["b","a","c"] "a" = 1]. *)

8.2.5 The Specification Game

When evaluating specifications, it can be useful to imagine that a game is being played between two people: a specifier
and a devious programmer.

Suppose that the specifier writes the following specification:

(** Returns a list. *)
val reverse : 'a list -> 'a list

This spec is clearly incomplete. For example, a devious programmer could meet the spec with an implementation that
gives the following output:

# reverse [1; 2; 3];;
- : int list = []

The specifier, upon realizing this, refines the spec as follows:

(** [reverse lst] returns a list that is the same length as [lst]. *)
val reverse : 'a list -> 'a list

But the devious programmer discovers that the spec still allows broken implementations:

# reverse [1; 2; 3];;
- : int list = [0; 0; 0]

Finally, the specifier settles on a third spec:

(** [reverse lst] returns a list [m] satisfying the following conditions:
- [length lst = length m],
- for all [i], [nth m i = nth lst (n - i - 1)],

where [n] is the length of [lst].
For example, [reverse [1; 2; 3]] is [[3; 2; 1]], and [reverse []] is [[]]. *)

val reverse : 'a list -> 'a list

With this spec, the devious programmer is forced to provide a working implementation to meet the spec, so the specifier
has successfully written her spec.
The point of playing this game is to improve your ability to write specifications. Obviously we’re not advocating that you
deliberately try to violate the intent of a specification and get away with it. When reading someone else’s specification,
read as generously as possible. But be ruthless about improving your own specifications.
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8.2.6 Comments

In addition to specifying functions, programmers need to provide comments in the body of the functions. In fact, pro-
grammers usually do not write enough comments in their code. (For a classic example, check out the actual comment on
line 561 of the Quake 3 Arena game engine.)
But this doesn’t mean that adding more comments is always better. The wrong comments will simply obscure the code
further. Shoveling as many comments into code as possible usually makes the code worse! Both code and comments are
precise tools for communication (with the computer and with other programmers) that should be wielded carefully.
It is particularly annoying to read code that contains many interspersed comments (typically of questionable value), e.g.:

let y = x + 1 (* make y one greater than x *)

For complex algorithms, some comments may be necessary to explain how the code implementing the algorithm works.
Programmers are often tempted to write comments about the algorithm interspersed through the code. But someone
reading the code will often find these comments confusing because they don’t have a high-level picture of the algorithm.
It is usually better to write a paragraph-style comment at the beginning of the function explaining how its implementation
works. Explicit points in the code that need to be related to that paragraph can then be marked with very brief comments,
like (* case 1 *).
Another common but well-intentioned mistake is giving variables long, descriptive names, as in the following verbose
code:

let number_of_zeros the_list =
List.fold_left (fun (accumulator : int) (list_element : int) ->

accumulator + (if list_element = 0 then 1 else 0)) 0 the_list

val number_of_zeros : int list -> int = <fun>

Code using such long names is verbose and hard to read. Instead of trying to embed a complete description of a variable
in its name, use a short and suggestive name (e.g., zeros), and if necessary, add a comment at its declaration explaining
the purpose of the variable.

let zeros lst =
let is0 = function 0 -> 1 | _ -> 0 in
List.fold_left (fun zs x -> zs + is0 x) 0 lst

val zeros : int list -> int = <fun>

A similarly bad practice is to encode the type of the variable in its name, e.g., naming a variable i_count to show that
it’s an integer. The type system is going to guarantee that for you, and your editor can provide a hover-over to show the
type. If you really want to emphasize the type in the code, add a type annotation at the point where the variable comes
into scope.
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8.3 Module Documentation

The specification of functions provided by a module can be found in its interface, which is what clients will consult. But
what about internal documentation, which is relevant to those who implement and maintain a module? The purpose of
such implementation comments is to explain to the reader how the implementation correctly implements its interface.

Reminder
It is inappropriate to copy the specifications of functions found in the module interface into the module implementation.
Copying runs the risk of introducing inconsistency as the program evolves, because programmers don’t keep the copies
in sync. Copying code and specifications is a major source (if not the major source) of program bugs. In any case,
implementers can always look at the interface for the specification.

Implementation comments fall into two categories. The first category arises because a module implementation may define
new types and functions that are purely internal to themodule. If their significance is not obvious, these types and functions
should be documented in much the same style that we have suggested for documenting interfaces. Often, as the code is
written, it becomes apparent that the new types and functions defined in the module form an internal data abstraction or
at least a collection of functionality that makes sense as a module in its own right. This is a signal that the internal data
abstraction might be moved to a separate module and manipulated only through its operations.
The second category of implementation comments is associated with the use of data abstraction. Suppose we are imple-
menting an abstraction for a set of items of type 'a. The interface might look something like this:

(** A set is an unordered collection in which multiplicity is ignored. *)
module type Set = sig

(** ['a t] represents a set whose elements are of type ['a]. *)
type 'a t

(** [empty] is the set containing no elements. *)
val empty : 'a t

(** [mem x s] is whether [x] is a member of set [s]. *)
val mem : 'a -> 'a t -> bool

(** [add x s] is the set containing all the elements of [s]
as well as [x]. *)

val add : 'a -> 'a t -> 'a t

(** [rem x s] is the set containing all the elements of [s],
minus [x]. *)

val rem : 'a -> 'a t -> 'a t

(** [size s] is the cardinality of [s]. *)
val size: 'a t -> int

(** [union s1 s2] is the set containing all the elements that
are in either [s1] or [s2]. *)

val union: 'a t -> 'a t -> 'a t

(** [inter s1 s2] is the set containing all the elements that
are in both [s1] and [s2]. *)

val inter: 'a t -> 'a t -> 'a t
end

In a real signature for sets, we’d want operations such as map and fold as well, but let’s omit these for now for simplicity.
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There are many ways to implement this abstraction.
As we’ve seen before, one easy way is as a list:

(** Implementation of sets as lists with duplicates. *)
module ListSet : Set = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add = List.cons
let rem x = List.filter (( <> ) x)
let size lst = List.(lst |> sort_uniq Stdlib.compare |> length)
let union lst1 lst2 = lst1 @ lst2
let inter lst1 lst2 = List.filter (fun h -> mem h lst2) lst1

end

module ListSet : Set

This implementation has the advantage of simplicity. For small sets that tend not to have duplicate elements, it will be
a fine choice. Its performance will be poor for large sets or applications with many duplicates but for some applications
that’s not an issue.
Notice that the types of the functions do not need to be written down in the implementation. They aren’t needed because
they’re already present in the signature, just like the specifications that are also in the signature don’t need to be replicated
in the structure.
Here is another implementation of Set that also uses 'a list but requires the lists to contain no duplicates. This
implementation is also correct (and also slow for large sets). Notice that we are using the same representation type, yet
some important aspects of the implementation (add, size, union) are quite different.

(** Implementation of sets as lists without duplicates. *)
module UniqListSet : Set = struct
type 'a t = 'a list
let empty = []
let mem = List.mem
let add x lst = if mem x lst then lst else x :: lst
let rem x = List.filter (( <> ) x)
let size = List.length
let union lst1 lst2 = lst1 @ lst2 |> List.sort_uniq Stdlib.compare
let inter lst1 lst2 = List.filter (fun h -> mem h lst2) lst1

end

module UniqListSet : Set

An important reason why we introduced the writing of function specifications was to enable local reasoning: once a func-
tion has a spec, we can judge whether the function does what it is supposed to without looking at the rest of the program.
We can also judge whether the rest of the program works without looking at the code of the function. However, we cannot
reason locally about the individual functions in the three module implementations just given. The problem is that we don’t
have enough information about the relationship between the concrete type (int list) and the corresponding abstract
type (set). This lack of information can be addressed by adding two new kinds of comments to the implementation: the
abstraction function and the representation invariant for the abstract data type. We turn to discussion of those, next.
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8.3.1 Abstraction Functions

The client of any Set implementation should not be able to distinguish it from any other implementation based on its
functional behavior. As far as the client can tell, the operations act like operations on the mathematical ideal of a set. In
the first implementation, the lists [3; 1], [1; 3], and [1; 1; 3] are distinguishable to the implementer, but not
to the client. To the client, they all represent the abstract set {1, 3} and cannot be distinguished by any of the operations
of the Set signature. From the point of view of the client, the abstract data type describes a set of abstract values and
associated operations. The implementer knows that these abstract values are represented by concrete values that may
contain additional information invisible from the client’s view. This loss of information is described by the abstraction
function, which is a mapping from the space of concrete values to the abstract space. The abstraction function for the
implementation ListSet looks like this:

Notice that several concrete values may map to a single abstract value; that is, the abstraction function may be many-to-
one. It is also possible that some concrete values do not map to any abstract value; the abstraction function may be partial.
That is not the case with ListSet, but it might be with other implementations.
The abstraction function is important for deciding whether an implementation is correct, therefore it belongs as a com-
ment in the implementation of any abstract data type. For example, in the ListSet module, we could document the
abstraction function as follows:

module ListSet : Set = struct
(** Abstraction function: The list [[a1; ...; an]] represents the

set [{b1, ..., bm}], where [[b1; ...; bm]] is the same list as
[[a1; ...; an]] but with any duplicates removed. The empty list
[[]] represents the empty set [{}]. *)

type 'a t = 'a list
...

end

This comment explicitly points out that the list may contain duplicates, which is helpful as a reinforcement of the first
sentence. Similarly, the case of an empty list is mentioned explicitly for clarity, although some might consider it to be
redundant.
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The abstraction function for the second implementation, which does not allow duplicates, hints at an important difference.
We can write the abstraction function for this second representation a bit more simply because we know that the elements
are distinct.

module UniqListSet : Set = struct
(** Abstraction function: The list [[a1; ...; an]] represents the set

[{a1, ..., an}]. The empty list [[]] represents the empty set [{}]. *)
type 'a t = 'a list
...

end

8.3.2 Implementing the Abstraction Function

What would it mean to implement the abstraction function for ListSet? We’d want a function that took an input of
type 'a ListSet.t. But what should its output type be? The abstract values are mathematical sets, not OCaml types.
If we did hypothetically have a type 'a set that our abstraction function could return, there would have been little point
in developing ListSet; we could have just used that 'a set type without doing any work of our own.
On the other hand, we might implement something close to the abstraction function by converting an input of type 'a
ListSet.t to a built-in OCaml type or standard library type:

• We could convert to a string. That would have the advantage of being easily readable by humans in the toplevel
or in debug output. Java programmers use toString() for similar purposes.

• We could convert to 'a list. (Actually there’s little conversion to be done). For data collections this is a
convenient choice, since lists can at least approximately represent many data structures: stacks, queues, dictionaries,
sets, heaps, etc.

The following functions implement those ideas. Note that to_string has to take an additional argument
string_of_val from the client to convert 'a to string.

module ListSet : Set = struct
...

let uniq lst = List.sort_uniq Stdlib.compare lst

let to_string string_of_val lst =
let interior =

lst |> uniq |> List.map string_of_val |> String.concat ", "
in
"{" ^ interior ^ "}"

let to_list = uniq
end

Installing a custom formatter, as discussed in the section on encapsulation, could also be understood as implementing the
abstraction function. But in that case it’s usable only by humans at the toplevel rather than other code, programmatically.
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8.3.3 Commutative Diagrams

Using the abstraction function, we can now talk about what it means for an implementation of an abstraction to be
correct. It is correct exactly when every operation that takes place in the concrete space makes sense when mapped by the
abstraction function into the abstract space. This can be visualized as a commutative diagram:

A commutative diagrammeans that if we take the two paths around the diagram, we have to get to the same place. Suppose
that we start from a concrete value and apply the actual implementation of some operation to it to obtain a new concrete
value or values. When viewed abstractly, a concrete result should be an abstract value that is a possible result of applying
the function as described in its specification to the abstract view of the actual inputs. For example, consider the union
function from the implementation of sets as lists with repeated elements covered last time. When this function is applied
to the concrete pair [1; 3], [2; 2], it corresponds to the lower-left corner of the diagram. The result of this operation is
the list [2; 2; 1; 3], whose corresponding abstract value is the set {1, 2, 3}. Note that if we apply the abstraction function
AF to the input lists [1; 3] and [2; 2], we have the sets {1, 3} and {2}. The commutative diagram requires that in this
instance the union of {1, 3} and {2} is {1, 2, 3}, which is of course true.

8.3.4 Representation Invariants

The abstraction function explains how information within the module is viewed abstractly by module clients. But that is
not all we need to know to ensure correctness of the implementation. Consider the size function in each of the two
implementations. For ListSet, which allows duplicates, we need to be sure not to double-count duplicate elements:

let size lst = List.(lst |> sort_uniq Stdlib.compare |> length)

But for UniqListSet, in which the lists have no duplicates, the size is just the length of the list:

let size = List.length

How do we know that latter implementation is correct? That is, how do we know that “lists have no duplicates”? It’s
hinted at by the name of the module, and it can be deduced from the implementation of add, but we’ve never carefully
documented it. Right now, the code does not explicitly say that there are no duplicates.
In the UniqListSet representation, not all concrete data items represent abstract data items. That is, the domain of the
abstraction function does not include all possible lists. There are some lists, such as [1; 1; 2], that contain duplicates
and must never occur in the representation of a set in the UniqListSet implementation; the abstraction function is
undefined on such lists. We need to include a second piece of information, the representation invariant (or rep invariant,
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or RI), to determine which concrete data items are valid representations of abstract data items. For sets represented as
lists without duplicates, we write this as part of the comment together with the abstraction function:

module UniqListSet : Set = struct
(** Abstraction function: the list [[a1; ...; an]] represents the set

[{a1, ..., an}]. The empty list [[]] represents the empty set [{}].
Representation invariant: the list contains no duplicates. *)

type 'a t = 'a list
...

end

If we think about this issue in terms of the commutative diagram, we see that there is a crucial property that is necessary to
ensure correctness: namely, that all concrete operations preserve the representation invariant. If this constraint is broken,
functions such as size will not return the correct answer. The relationship between the representation invariant and the
abstraction function is depicted in this figure:

We can use the rep invariant and abstraction function to judge whether the implementation of a single operation is correct
in isolation from the rest of the functions in the module. A function is correct if these conditions:

1. The function’s preconditions hold of the argument values.
2. The concrete representations of the arguments satisfy the rep invariant.

imply these conditions:
1. All new representation values created satisfy the rep invariant.
2. The commutative diagram holds.

The rep invariant makes it easier to write code that is provably correct, because it means that we don’t have to write code
that works for all possible incoming concrete representations—only those that satisfy the rep invariant. For example, in the
implementation UniqListSet, we do not care what the code does on lists that contain duplicate elements. However,
we do need to be concerned that on return, we only produce values that satisfy the rep invariant. As suggested in the figure
above, if the rep invariant holds for the input values, then it should hold for the output values, which is why we call it an
invariant.
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8.3.5 Implementing the Representation Invariant

When implementing a complex abstract data type, it is often helpful to write an internal function that can be used to
check that the rep invariant holds of a given data item. By convention, we will call this function rep_ok. If the module
accepts values of the abstract type that are created outside the module, say by exposing the implementation of the type in
the signature, then rep_ok should be applied to these to ensure the representation invariant is satisfied. In addition, if
the implementation creates any new values of the abstract type, rep_ok can be applied to them as a sanity check. With
this approach, bugs are caught early, and a bug in one function is less likely to create the appearance of a bug in another.
A convenient way to write rep_ok is to make it an identity function that just returns the input value if the rep invariant
holds and raises an exception if it fails.

(* Checks whether x satisfies the representation invariant. *)
let rep_ok x =

if (* check the RI holds of x *) then x else failwith "RI violated"

Here is an implementation of Set that uses the same data representation as UniqListSet, but includes copious
rep_ok checks. Note that rep_ok is applied to all input sets and to any set that is ever created. This ensures that if
a bad set representation is created, it will be detected immediately. In case we somehow missed a check on creation, we
also apply rep_ok to incoming set arguments. If there is a bug, these checks will help us quickly figure out where the
rep invariant is being broken.

(** Implementation of sets as lists without duplicates. *)
module UniqListSet : Set = struct

(** Abstraction function: The list [[a1; ...; an]] represents the
set [{a1, ..., an}]. The empty list [[]] represents the empty set [{}].
Representation invariant: the list contains no duplicates. *)

type 'a t = 'a list

let rep_ok lst =
let u = List.sort_uniq Stdlib.compare lst in
match List.compare_lengths lst u with 0 -> lst | _ -> failwith "RI"

let empty = []

let mem x lst = List.mem x (rep_ok lst)

let add x lst = rep_ok (if mem x (rep_ok lst) then lst else x :: lst)

let rem x lst = rep_ok (List.filter (( <> ) x) (rep_ok lst))

let size lst = List.length (rep_ok lst)

let union lst1 lst2 =
rep_ok
(List.fold_left

(fun u x -> if mem x lst2 then u else x :: u)
(rep_ok lst2) (rep_ok lst1))

let inter lst1 lst2 = rep_ok (List.filter (fun h -> mem h lst2) (rep_ok lst1))
end

module UniqListSet : Set

Calling rep_ok on every argument can be too expensive for the production version of a program. The rep_ok above,
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for example, requires linearithmic time, which destroys the efficiency of all the previously constant time or linear time
operations. For production code, it may be more appropriate to use a version of rep_ok that only checks the parts of
the rep invariant that are cheap to check. When there is a requirement that there be no run-time cost, rep_ok can be
changed to an identity function (or macro) so the compiler optimizes away the calls to it. However, it is a good idea to
keep around the full code of rep_ok so it can be easily reinstated during future debugging:

let rep_ok lst = lst

let rep_ok_expensive =
let u = List.sort_uniq Stdlib.compare lst in
match List.compare_lengths lst u with 0 -> lst | _ -> failwith "RI"

Some languages provide support for conditional compilation, which provides some kind of support for compiling some
parts of the codebase but not others. The OCaml compiler supports a flag noassert that disables assertion checking.
So you could implement rep invariant checking with assert, and turn it off with noassert. The problem with that
is that some portions of your codebase might require assertion checking to be turned on to work correctly.

8.4 Testing and Debugging

Correct programs behave as we intend them to behave. Validation is the process of building our confidence in correct
program behavior.

8.4.1 Validation

There are many ways to increase that confidence. Social methods, formal methods, and testing are three. The latter is our
main focus, but let’s first consider the other two.
Social methods involve developing programs with other people, relying on their assistance to improve correctness. Some
good techniques include the following:

• Code walkthrough. In the walkthrough approach, the programmer presents the documentation and code to a re-
viewing team, and the team gives comments. This is an informal process. The focus is on the code rather than
the coder, so hurt feelings are easier to avoid. However, the team may not get as much assurance that the code is
correct.

• Code inspection. Here, the review team drives the code review process. Some, though not necessarily very much,
team preparation beforehand is useful. They define goals for the review process and interact with the coder(s) to
understand where there may be quality problems. Again, making the process as blameless as possible is important.

• Pair programming. The most informal approach to code review is through pair programming, in which code is
developed by a pair of engineers: the driver who writes the code, and the observer who watches. The role of the
observer is to be a critic, to think about potential errors, and to help navigate larger design issues. It’s usually better
to have the observer be the engineer with the greater experience with the coding task at hand. The observer reviews
the code, serving as the devil’s advocate that the driver must convince. When the pair is developing specifications,
the observer thinks about how to make specs clearer or shorter. Pair programming has other benefits. It is often
more fun and educational to work with a partner, and it helps focus both partners on the task. If you are just starting
to work with another programmer, pair programming is a good way to understand how your partner thinks and to
establish common vocabulary. It is a good idea for partners to trade off roles, too.

These social techniques for code review can be remarkably effective. In one study conducted at IBM (Jones, 1991), code
inspection found 65% of the known coding errors and 25% of the known documentation errors, whereas testing found only
20% of the coding errors and none of the documentation errors. The code inspection process may be more effective than
walkthroughs. One study (Fagan, 1976) found that code inspections resulted in code with 38% fewer failures, compared
to code walkthroughs.
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Thorough code review can be expensive, however. Jones found that preparing for code inspection took one hour per 150
lines of code, and the actual inspection covered 75 lines of code per hour. Having up to three people on the inspection
team improves the quality of inspection; beyond that, more inspectors doesn’t seem to help. Spending a lot of time
preparing for inspection did not seem to be useful, either. Perhaps this is because much of the value of inspection lies in
the interaction with the coders.
Formal methods use the power of mathematics and logic to validate program behavior. Verification uses the program
code and its specifications to construct a proof that the program behaves correctly on all possible inputs. There are research
tools available to help with program verification, often based on automated theorem provers, as well as research languages
that are designed for program verification. Verification tends to be expensive and to require thinking carefully about and
deeply understanding the code to be verified. So in practice, it tends to be applied to code that is important and relatively
short. Verification is particularly valuable for critical systems where testing is less effective. Because their execution is not
deterministic, concurrent programs are hard to test, and sometimes subtle bugs can only be found by attempting to verify
the code formally. In fact, tools to help prove programs correct have been getting increasingly effective and some large
systems have been fully verified, including compilers, processors and processor emulators, and key pieces of operating
systems.
Testing involves actually executing the program on sample inputs to see whether the behavior is as expected. By com-
paring the actual results of the program with the expected results, we find out whether the program really works on the
particular inputs we try it on. Testing can never provide the absolute guarantees that formal methods do, but it is signifi-
cantly easier and cheaper to do. It is also the validation methodology with which you are probably most familiar. Testing
is a good, cost-effective way of building confidence in correct program behavior.

8.4.2 Debugging

When testing reveals an error, we usually say that the program is “buggy”. But the word “bug” suggests something that
wandered into a program. Better terminology would be that there are

• faults, which are the result of human errors in software systems, and
• failures, which are violations of requirements.

Some faults might never appear to an end user of a system, but failures are those faults that do. A fault might result
because an implementation doesn’t match design, or a design doesn’t match the requirements.
Debugging is the process of discovering and fixing faults. Testing clearly is the “discovery” part, but fixing can be more
complicated. Debugging can be a task that takes even more time than an original implementation itself! So you would do
well to make it easy to debug your programs from the start. Write good specifications for each function. Document the
AF and RI for each data abstraction. Keep modules small, and test them independently.
Inevitably, though, you will discover faults in your programs. When you do, approach them as a scientist by employing
the scientific method:

• evaluate the data that are available;
• formulate a hypothesis that might explain the data;
• design a repeatable experiment to test that hypothesis; and
• use the result of that experiment to refine or refute your hypothesis.

Often the crux of this process is finding the simplest, smallest input that triggers a fault. That’s not usually the original
input for which we discover a fault. So some initial experimentation might be needed to find a minimal test case.
Never be afraid to write additional code, even a lot of additional code, to help you find faults. Functions like to_string
or format can be invaluable in understanding computations, so writing them up front before any faults are detected is
completely worthwhile.
When you do discover the source of a fault, be extra careful in fixing it. It is tempting to slap a quick fix into the code
and move on. This is quite dangerous. Far too often, fixing a fault just introduces a new (and unknown) fault! If a bug is
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difficult to find, it is often because the program logic is complex and hard to reason about. Think carefully about why the
fault could have been introduced in the first place, and about how you might prevent similar faults in the future.

8.5 Black-box and Glass-box Testing

We would like to know that a program works on all possible inputs. The problem with testing is that it is usually infeasible
to try all the possible inputs. For example, suppose that we are implementing a module that provides an abstract data type
for rational numbers. One of its operations might be an addition function plus, e.g.:

module type RATIONAL = sig
(** A [t] is a rational. *)
type t

(** [create p q] is the rational number [p/q].
Raises: [Invalid_argument "0"] if [q] is 0. *)

val create : int -> int -> t

(** [plus r1 r2] is [r1 + r2]. *)
val plus : t -> t -> t

end

module Rational : RATIONAL = struct
(** AF: [(p, q)] represents the rational number [p/q].

RI: [q] is not 0. *)
type t = int * int

let create p q =
if q = 0 then invalid_arg "0" else (p, q)

let plus (p1, q1) (p2, q2) =
(p1 * q2 + p2 * q1, q1 * q2)

end

What would it take to exhaustively test just this one function? We’d want to try all possible rationals as both the r1
and r2 arguments. A rational is formed from two ints, and there are 263 ints on a modern OCaml implementation.
Therefore there are approximately (263)4 = 2252 possible inputs to the plus function. Even if we test one addition
every nanosecond, it will take about 1059 years to finish testing this one function.
Clearly we can’t test software exhaustively. But that doesn’t mean we should give up on testing. It just means that we
need to think carefully about what our test cases should be so that they are as effective as possible at convincing us that
the code works.
Consider our create function, above. It takes in two integers p and q as arguments. How should we go about selecting
a relatively small number of test cases that will convince us that the function works correctly on all possible inputs? We
can visualize the space of all possible inputs as a large square:
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There are about 2126 points in this square, so we can’t afford to test them all. And testing them all is going to mostly be
a waste of time—most of the possible inputs provide nothing new. We need a way to find a set of points in this space to
test that are interesting and will give a good sense of the behavior of the program across the whole space.
Input spaces generally comprise a number of subsets in which the behavior of the code is similar in some essential fashion
across the entire subset. We don’t get any additional information by testing more than one input from each such subset.
If we test all the interesting regions of the input space, we have achieved good coverage. We want tests that in some useful
sense cover the space of possible program inputs.
Two good ways of achieving coverage are black-box testing and glass-box testing. We discuss those, next.

8.5.1 Black-box Testing

In selecting our test cases for good coverage, we might want to consider both the specification and the implementation
of the program or module being tested. It turns out that we can often do a pretty good job of picking test cases by just
looking at the specification and ignoring the implementation. This is known as black-box testing. The idea is that we
think of the code as a black box about which all we can see is its surface: its specification. We pick test cases by looking
at how the specification implicitly introduces boundaries that divide the space of possible inputs into different regions.
When writing black-box test cases, we ask ourselves what set of test cases that will produce distinctive behavior as
predicted by the specification. It is important to try out both typical inputs and inputs that are boundary cases aka corner
cases or edge cases. A common error is to only test typical inputs, with the result that the program usually works but
fails in less frequent situations. It’s also important to identify ways in which the specification creates classes of inputs
that should elicit similar behavior from the function, and to test on those paths through the specification. Here are some
examples.
Example 1.
Here are some ideas for how to test the create function:

• Looking at the square above, we see that it has boundaries at min_int and max_int. We want to try to con-
struct rationals at the corners and along the sides of the square, e.g., create min_int min_int, create
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max_int 2, etc.
• The line p=0 is important because p/q is zero all along it. We should try (0, q) for various values of q.
• We should try some typical (p, q) pairs in all four quadrants of the space.
• We should try both (p, q) pairs in which q divides evenly into p, and pairs in which q does not divide into p.
• Pairs of the form (1, q), (-1, q), (p, 1), (p, -1) for various p and q also may be interesting given the
properties of rational numbers.

The specification also says that the code will check that q is not zero. We should construct some test cases to ensure this
checking is done as advertised. Trying (1, 0), (max_int, 0), (min_int, 0), (-1, 0), (0, 0) to see that
they all raise the specified exception would probably be an adequate set of black-box tests.
Example 2.
Consider a function list_max:

(** Return the maximum element in the list. *)
val list_max: int list -> int

What is a good set of black-box test cases? Here the input space is the set of all possible lists of ints. We need to try
some typical inputs and also consider boundary cases. Based on this spec, boundary cases include the following:

• A list containing one element. In fact, an empty list is probably the first boundary case we think of. Looking at
the spec above, we realize that it doesn’t specify what happens in the case of an empty list. Thus, thinking about
boundary cases is also useful in identifying errors in the specification.

• A list containing two elements.
• A list in which the maximum is the first element. Or the last element. Or somewhere in the middle of the list.
• A list in which every element is equal.
• A list in which the elements are arranged in ascending sorted order, and one in which they are arranged in descending
sorted order.

• A list in which the maximum element is max_int, and a list in which the maximum element is min_int.
Example 3.
Consider the function sqrt:

(** [sqrt x n] is the square root of [x] computed to an accuracy of [n]
significant digits.
Requires: [x >= 0] and [n >= 1]. *)

val sqrt : float -> int -> float

The precondition identifies two possibilities for x (either it is 0 or greater) and two possibilities for n (either it is 1 or
greater). That leads to four “paths through the specification”, i.e., representative and boundary cases for satisfying the
precondition, which we should test:

• x is 0 and n is 1
• x is greater than 0 and n is 1
• x is 0 and n is greater than 1
• x is greater than 0 and n is greater than 1.
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8.5.2 Black-box Testing of Data Abstractions

So far we’ve been thinking about testing just one function at a time. But data abstractions usually have many operations,
and we need to test how those operations interact with one another. It’s useful to distinguish consumer and producers of
the data abstraction:

• A consumer is an operation that takes a value of the data abstraction as input.
• A producer is an operation that returns a value of the data abstraction as output.

For example, consider this set abstraction:

module type Set = sig

(** ['a t] is the type of a set whose elements have type ['a]. *)
type 'a t

(** [empty] is the empty set. *)
val empty : 'a t

(** [size s] is the number of elements in [s]. *
[size empty] is [0]. *)

val size : 'a t -> int

(** [add x s] is a set containing all the elements of
[s] as well as element [x]. *)

val add : 'a -> 'a t -> 'a t

(** [mem x s] is [true] iff [x] is an element of [s]. *)
val mem : 'a -> 'a t -> bool

end

The empty and add functions are producers; and the size, add and mem functions are consumers.
When black-box testing a data abstraction, we should test how each consumer of the data abstraction handles every path
through each producer of it. In the Set example, that means testing the following:

• how size handles the empty set;
• how size handles a set produced by add, both when add leaves the set unchanged as well as when it increases
the set;

• how add handles sets produced by empty as well as add itself;
• how mem handles sets produced by empty as well as add, including paths where mem is invoked on elements that
have been added as well as elements that have not.

8.5.3 Glass-box Testing

Black-box testing is a good place to start when writing test cases, but ultimately it is not enough. In particular, it’s not
possible to determine how much coverage of the implementation a black-box test suite actually achieves—we actually
need to know the implementation source code. Testing based on that code is known as glass box or white box testing.
Glass-box testing can improve on black-box by testing execution paths through the implementation code: the series of
expressions that is conditionally evaluated based on if-expressions, match-expressions, and function applications. Test
cases that collectively exercise all paths are said to be path-complete. At a minimum, path-completeness requires that for
every line of code, and even for every expression in the program, there should be a test case that causes it to be executed.
Any unexecuted code could contain a bug if it has never been tested.
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For true path completeness we must consider all possible execution paths from start to finish of each function, and try to
exercise every distinct path. In general this is infeasible, because there are too many paths. A good approach is to think
of the set of paths as the space that we are trying to explore, and to identify boundary cases within this space that are
worth testing.
For example, consider the following implementation of a function that finds the maximum of its three arguments:

let max3 x y z =
if x > y then

if x > z then x else z
else

if y > z then y else z

val max3 : 'a -> 'a -> 'a -> 'a = <fun>

Black-box testing might lead us to invent many tests, but looking at the implementation reveals that there are only four
paths through the code—the paths that return x, z, y, or z (again). We could test each of those paths with representative
inputs such as: max3 3 2 1, max3 3 2 4, max3 1 2 1, max3 1 2 3.
When doing glass box testing, we should include test cases for each branch of each (nested) if expression, and each branch
of each (nested) pattern match. If there are recursive functions, we should include test cases for the base cases as well as
each recursive call. Also, we should include test cases to trigger each place where an exception might be raised.
Of course, path complete testing does not guarantee an absence of errors. We still need to test against the specification,
i.e., do black-box testing. For example, here is a broken implementation of max3:

let max3 x y z = x

The test max3 2 1 1 is path complete, but doesn’t reveal the error.

8.5.4 Glass-box Testing of Data Abstractions

Look at the abstraction function and representation invariant for hints about what boundaries may exist in the space of
values manipulated by a data abstraction. The rep invariant is a particularly effective tool for constructing useful test
cases. Looking at the rep invariant of the Rational data abstraction above, we see that it requires that q is non-zero.
Therefore, we should construct test cases to see whether it’s possible to cause that invariant to be violated.

8.5.5 Black-box vs. Glass-box

Black-box testing has some important advantages:
• It doesn’t require that we see the code we are testing. Sometimes code will not be available in source code form,
yet we can still construct useful test cases without it. The person writing the test cases does not need to understand
the implementation.

• The test cases do not depend on the implementation. They can be written in parallel with or before the implemen-
tation. Further, good black-box test cases do not need to be changed, even if the implementation is completely
rewritten.

• Constructing black-box test cases causes the programmer to think carefully about the specification and its impli-
cations. Many specification errors are caught this way.

The disadvantage of black box testing is that its coverage may not be as high as we’d like, because it has to work without
the implementation.

270 Chapter 8. Correctness



OCaml Programming: Correct + Efficient + Beautiful

8.5.6 Bisect

Glass-box testing can be aided by code-coverage tools that assess how much of the code has been exercised by a test suite.
The bisect_ppx tool for OCaml can tell you which expressions in your program have been tested, and which have not.
Here’s how it works:

• You compile your code using Bisect_ppx (henceforth, just Bisect for short) as part of the compilation process. It
instruments your code, mainly by inserting additional expressions to be evaluated.

• You run your code. The instrumentation that Bisect inserted causes your program to do something in addition to
whatever functionality you programmed yourself: the program will now record which expressions from the source
code actually get executed at run time, and which do not. Also, the program will now produce an output file that
contains that information.

• You run a tool called bisect-ppx-report on that output file. It produces HTML showing you which parts of
your code got executed, and which did not.

How does that help with computing coverage of a test suite? If you run your OUnit test suite, the test cases in it will cause
the code in whatever functions they test to be executed. If you don’t have enough test cases, some code in your functions
will never be executed. The report produced by Bisect will show you exactly what code that is. You can then design new
glass-box test cases to cause that code to execute, add them to your OUnit suite, and create a new Bisect report to confirm
that the code really did get executed.
Bisect Tutorial.

1. Download the file sorts.ml. You will find an implementation of insertion sort and merge sort.
2. Download the file test_sorts.ml. It has the skeleton for an OUnit test suite.
3. Create a dune file to execute test_sorts:

(executable
(name test_sorts)
(libraries ounit2)
(instrumentation
(backend bisect_ppx)))

4. Run:

$ dune exec --instrument-with bisect_ppx ./test_sorts.exe

That will execute the test suite with Bisect coverage enabled, causing some files namedbisectNNNN.coverage
to be produced.

5. Run:

$ bisect-ppx-report html

to generate the Bisect report from your test suite execution. The report is in a newly-created directory named
_coverage.

6. Open the file _coverage/index.html in a web browser. Look at the per-file coverage; you’ll see we’ve
managed to test a few percent of sorts.ml with our test suite so far. Click on the link in that report for sorts.
ml. You’ll see that we’ve managed to cover only one line of the source code.

7. There are some additional tests in the test file. Try uncommenting those, as documented in the test file, and
increasing your code coverage. Between each run, you will need to delete the bisectNNNN.coverage files,
otherwise the report will contain information from those previous runs:
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$ rm bisect*.coverage

By the time you’re done uncommenting the provided tests, you should be at 25% coverage, including all of the insertion
sort implementation. For fun, try adding more tests to get 100% coverage of merge sort.
Parallelism. OUnit will by default attempt to run some of the tests in parallel, which reduces the time it takes to run a
large test suite, at the tradeoff of making it nondeterministic in what order the tests run. It’s possible for that to affect
coverage if you are testing imperative code. To make the tests run one at a time, in order, you can pass the flag -runner
sequential to the executable. OUnit will see that flag and cease parallelization:

$ dune exec --instrument-with bisect_ppx ./test_sorts.exe -- -runner sequential

8.6 Randomized Testing with QCheck

Randomized testing aka fuzz testing is the process of generating random inputs and feeding them to a program or a function
to see whether the program behaves correctly. The immediate issue is how to determine what the correct output is for
a given input. If a reference implementation is available—that is, an implementation that is believed to be correct but in
some other way does not suffice (e.g., its performance is too slow, or it is in a different language)—then the outputs of the
two implementations can be compared. Otherwise, perhaps some property of the output could be checked. For example,

• “not crashing” is a property of interest in user interfaces;
• adding 𝑛 elements to a data collection then removing those elements, and ending up with an empty collection, is a
property of interest in data structures; and

• encrypting a string under a key then decrypting it under that key and getting back the original string is a property
of interest in an encryption scheme like Enigma.

Randomized testing is an incredibly powerful technique. It is often used in testing programs for security vulnerabilities.
The qcheck package for OCaml supports randomized testing. We’ll look at it, next, after we discuss random number
generation.

8.6.1 Random Number Generation

To understand randomized testing, we need to take a brief digression into random number generation.
Most languages provide the facility to generate random numbers. In truth, these generators are usually not truly random
(in the sense that they are completely unpredictable) but in fact are pseudorandom: the sequence of numbers they generate
pass good statistical tests to ensure there is no discernible pattern in them, but the sequence itself is a deterministic function
of an initial seed value. (Recall that the prefix pseudo is from the Greek pseudēs meaning “false”.) Java and Python both
provide pseudorandom number generators (PRNGs). So does OCaml in the standard library’s Random module.
An Experiment. Start a new session of utop and enter the following:

# Random.int 100;;
# Random.int 100;;
# Random.int 100;;

Each response will be an integer 𝑖 such that 0 ≤ 𝑖 < 100.
Now quit utop and start another new session. Enter the same phrases again. You will get the same responses as last time.
In fact, unless your OCaml installation is somehow different than that used to produce this book, you will get the same
numbers as those below:
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Random.int 100;;
Random.int 100;;
Random.int 100;;

- : int = 44

- : int = 85

- : int = 82

Not exactly unpredictable, eh?
PRNGs. Although for purposes of security and cryptography a PRNG leads to terrible vulnerabilities, for other
purposes—including testing and simulation—PRNGs are just fine. Their predictability can even be useful: given the
same initial seed, a PRNG will always produce the same sequence of pseudorandom numbers, leading to the ability to
repeat a particular sequence of tests or a particular simulation.
The way a PRNG works in general is that it initializes a state that it keeps internally from the initial seed. From then on,
each time the PRNG generates a new value, it imperatively updates that state. The Random module makes it possible to
manipulate that state in limited ways. For example, you can

• get the current state with Random.get_state,
• duplicate the current state with Random.State.copy,
• request a random int generated from a particular state with Random.State.int, and
• initialize the state yourself. The functions Random.self_init and Random.State.make_self_init
will choose a “random” seed to initialize the state. They do so by sampling from a special Unix file named /dev/
urandom, which is meant to provide as close to true randomness as a computer can.

Repeating the Experiment. Start a new session of utop. Enter the following:

# Random.self_init ();;
# Random.int 100;;
# Random.int 100;;
# Random.int 100;;

Now do that a second time (it doesn’t matter whether you exit utop or not in between). You will notice that you get a
different sequence of values. With high probability, what you get will be different than the values below:

Random.self_init ();;
Random.int 100;;
Random.int 100;;
Random.int 100;;

- : unit = ()

- : int = 13

- : int = 96
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- : int = 51

8.6.2 QCheck Abstractions

QCheck has three abstractions we need to cover before using it for testing: generators, properties, and arbitraries. If you
want to follow along in utop, load QCheck with this directive:

#require "qcheck";;

Generators. One of the key pieces of functionality provided by QCheck is the ability to generate pseudorandom values
of various types. Here is some of the signature of the module that does that:

module QCheck : sig
...
module Gen :
sig
type 'a t = Random.State.t -> 'a
val int : int t
val generate : ?rand:Random.State.t -> n:int -> 'a t -> 'a list
val generate1 : ?rand:Random.State.t -> 'a t -> 'a
...

end
...

end

An 'a QCheck.Gen.t is a function that takes in a PRNG state and uses it to produce a pseudorandom value of type
'a. So QCheck.Gen.int produces pseudorandom integers. The function generate1 actually does the generation
of one pseudorandom value. It takes an optional argument that is a PRNG state; if that argument is not supplied, it uses
the default PRNG state. The function generate produces a list of n pseudorandom values.
QCheck implements many producers of pseudorandom values. Here are a few more of them:

module QCheck : sig
...
module Gen :
sig
val int : int t
val small_int : int t
val int_range : int -> int -> int t
val list : 'a t -> 'a list t
val list_size : int t -> 'a t -> 'a list t
val string : ?gen:char t -> string t
val small_string : ?gen:char t -> string t
...

end
...

end

You can read the documentation of those and many others.
Properties. It’s tempting to think that QCheck would enable us to test a function by generating many pseudorandom
inputs to the function, running the function on them, then checking that the outputs are correct. But there’s immediately
a problem: how can QCheck know what the correct output is for each of those inputs? Since they’re randomly generated,
the test engineer can’t hardcode the right outputs.
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So instead, QCheck allows us to check whether a property of each output holds. A property is a function of type t ->
bool, for some type t, that tells us whether the value of type t exhibits some desired characteristic. Here, for example,
are two properties; one that determines whether an integer is even, and another that determines whether a list is sorted in
non-decreasing order according to the built-in <= operator:

let is_even n = n mod 2 = 0

let rec is_sorted = function
| [] -> true
| [_] -> true
| h1 :: (h2 :: t as t') -> h1 <= h2 && is_sorted t'

val is_even : int -> bool = <fun>

val is_sorted : 'a list -> bool = <fun>

Arbitraries. The way we present to QCheck the outputs to be checked is with a value of type 'a QCheck.
arbitrary. This type represents an “arbitrary” value of type 'a—that is, it has been pseudorandomly chosen as
a value that we want to check, and more specifically, to check whether it satisfies a property.
We can create arbitraries out of generators using the function QCheck.make : 'a QCheck.Gen.t -> 'a
QCheck.arbitrary. (Actually that function takes some optional arguments that we elide here.) This isn’t actually
the normal way to create arbitraries, but it’s a simple way that will help us understand them; we’ll get to the normal way
in a little while. For example, the following expression represents an arbitrary integer:

QCheck.make QCheck.Gen.int

8.6.3 Testing Properties

To construct a QCheck test, we create an arbitrary and a property, and pass them to QCheck.Test.make, whose type
can be simplified to:

QCheck.Test.make : 'a QCheck.arbitrary -> ('a -> bool) -> QCheck.Test.t

In reality, that function also takes several optional arguments that we elide here. The test will generate some number of
arbitraries and check whether the property holds of each of them. For example, the following code creates a QCheck test
that checks whether an arbitrary integer is even:

let t = QCheck.Test.make (QCheck.make QCheck.Gen.int) is_even

val t : QCheck.Test.t = QCheck2.Test.Test <abstr>

If we want to change the number of arbitraries that are checked, we can pass an optional integer argument ~count to
QCheck.Test.make.
We can run that test with QCheck_runner.run_tests : QCheck.Test.t list -> int. (Once more,
that function takes some optional arguments that we elide here.) The integer it returns is 0 if all the tests in the list pass,
and 1 otherwise. For the test above, running it will output 1 with high probability, because it will generate at least one
odd integer.

QCheck_runner.run_tests [t]
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random seed: 65051295

--- Failure --------------------------------------------------------------------

Test anon_test_1 failed (0 shrink steps):

<no printer>

================================================================================

failure (1 tests failed, 0 tests errored, ran 1 tests)

- : int = 1

Unfortunately, that output isn’t very informative; it doesn’t tell us what particular values failed to satisfy the property!
We’ll fix that problem in a little while.
If you want to make an OCaml program that runs QCheck tests and prints the results, there is a function
QCheck_runner.run_tests_main that works much like OUnit2.run_test_tt_main: just invoke it as
the final expression in a test file. For example:

let tests = (* code that constructs a [QCheck.Test.t list] *)
let _ = QCheck_runner.run_tests_main tests

To compile QCheck code, just add the qcheck library to your dune file:

(executable
...
(libraries ... qcheck))

QCheck tests can be converted to OUnit tests and included in the usual kind of OUnit test suite we’ve been writing all
along. The function that does this is:

QCheck_runner.to_ounit2_test

- : ?rand:Random.State.t -> QCheck2.Test.t -> OUnit2.test = <fun>
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8.6.4 Informative Output from QCheck

We noted above that the output of QCheck so far has told us only whether some arbitraries satisfied a property, but not
which arbitraries failed to satisfy it. Let’s fix that problem.
The issue is with how we constructed an arbitrary directly out of a generator. An arbitrary is properly more than just a
generator. The QCheck library needs to know how to print values of the generator, and a few other things as well. You
can see that in the definition of 'a QCheck.arbitrary:

#show QCheck.arbitrary;;

type 'a arbitrary = private {

gen : 'a QCheck.Gen.t;

print : ('a -> string) option;

small : ('a -> int) option;

shrink : 'a QCheck.Shrink.t option;

collect : ('a -> string) option;

stats : 'a QCheck.stat list;

}

In addition to the generator field gen, there is a field containing an optional function to print values from the generator,
and a few other optional fields as well. Luckily, we don’t usually have to find a way to complete those fields ourselves; the
QCheck module provides many arbitraries that correspond to the generators found in QCheck.Gen:

module QCheck :
sig
...

val int : int arbitrary
val small_int : int arbitrary
val int_range : int -> int -> int arbitrary
val list : 'a arbitrary -> 'a list arbitrary
val list_of_size : int Gen.t -> 'a arbitrary -> 'a list arbitrary
val string : string arbitrary
val small_string : string arbitrary
...

end

Using those arbitraries, we can get improved error messages:

let t = QCheck.Test.make ~name:"my_test" QCheck.int is_even;;
QCheck_runner.run_tests [t];;
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val t : QCheck.Test.t = QCheck2.Test.Test <abstr>

--- Failure --------------------------------------------------------------------

Test my_test failed (77 shrink steps):

-3

================================================================================

failure (1 tests failed, 0 tests errored, ran 1 tests)

- : int = 1

The output tells us the my_test failed, and shows us the input that caused the failure.

8.6.5 Testing Functions with QCheck

The final piece of the QCheck puzzle is to use a randomly generated input to test whether a function’s output satisfies
some property. For example, here is a QCheck test to see whether the output of double is correct:

let double x = 2 * x;;
let double_check x = double x = x + x;;
let t = QCheck.Test.make ~count:1000 QCheck.int double_check;;
QCheck_runner.run_tests [t];;

val double : int -> int = <fun>

val double_check : int -> bool = <fun>

val t : QCheck.Test.t = QCheck2.Test.Test <abstr>

================================================================================

success (ran 1 tests)

- : int = 0
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Above, double is the function we are testing. The property we’re testing double_check, is that double x is
always x + x. We do that by having QCheck create 1000 arbitrary integers and test that the property holds of each of
them.
Here are a couple more examples, drawn from QCheck’s own documentation. The first checks that List.rev is an
involution, meaning that applying it twice brings you back to the original list. That is a property that should hold of a
correct implementation of list reversal.

let rev_involutive lst = List.(lst |> rev |> rev = lst);;
let t = QCheck.(Test.make ~count:1000 (list int) rev_involutive);;
QCheck_runner.run_tests [t];;

val rev_involutive : 'a list -> bool = <fun>

val t : QCheck.Test.t = QCheck2.Test.Test <abstr>

================================================================================

success (ran 1 tests)

- : int = 0

Indeed, running 1000 random tests reveals that none of them fails. The int generator used above generates integers
uniformly over the entire range of OCaml integers. The list generator creates lists whose elements are individual
generated by int. According to the documentation of list, the length of each list is randomly generated by another
generator nat, which generates “small natural numbers.” What does that mean? It isn’t specified. But if we read the
current source code, we see that those are integers from 0 to 10,000, and biased toward being smaller numbers in that
range.
The second example checks that all lists are sorted. Of course, not all lists are sorted! So we should expect this test to
fail.

let is_sorted lst = lst = List.sort Stdlib.compare lst;;
let t = QCheck.(Test.make ~count:1000 (list small_nat) is_sorted);;
QCheck_runner.run_tests [t];;

val is_sorted : 'a list -> bool = <fun>

val t : QCheck.Test.t = QCheck2.Test.Test <abstr>

--- Failure --------------------------------------------------------------------

Test anon_test_4 failed (13 shrink steps):
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[1; 0]

================================================================================

failure (1 tests failed, 0 tests errored, ran 1 tests)

- : int = 1

The output shows an example of a list that is not sorted, hence violates the property. Generator small_nat is like nat
but ranges from 0 to 100.

8.7 Proving Correctness

Testing provides evidence of correctness, but not full assurance. Even after extensive black-box and glass-box testing,
maybe there’s still some test case the programmer failed to invent, and that test case would reveal a fault in the program.

Program testing can be used to show the presence of bugs, but never to show their absence.
---Edsger W. Dijkstra

The point is not that testing is useless! It can be quite effective. But it is a kind of inductive reasoning, in which evidence
(i.e., passing tests) accumulates in support of a conclusion (i.e., correctness of the program) without absolutely guaran-
teeing the validity of that conclusion. (Note that the word “inductive” here is being used in a different sense than the
proof technique known as induction.) To get that guarantee, we turn to deductive reasoning, in which we proceed from
premises and rules about logic to a valid conclusion. In other words, we prove the correctness of the program. Our goal,
next, is to learn some techniques for such correctness proofs. These techniques are known as formal methods because of
their use of logical formalism.
Correctness here means that the program produces the right output according to a specification. Specifications are usually
provided in the documentation of a function (hence the name “specification comment”): they describe the program’s
precondition and postcondition. Postconditions, as we have been writing them, have the form [f x] is "...a
description of the output in terms of the input [x]...". For example, the specification of a
factorial function could be:

(** [fact n] is [n!]. Requires: [n >= 0]. *)
let rec fact n = ...

The postcondition is asserting an equality between the output of the function and some English description of a com-
putation on the input. Formal verification is the task for proving that the implementation of the function satisfies its
specification.
Equalities are one of the fundamental ways we think about correctness of functional programs. The absence of mutable
state makes it possible to reason straightforwardly about whether two expressions are equal. It’s difficult to do that in an
imperative language, because those expressions might have side effects that change the state.
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8.7.1 Equality

When are two expressions equal? Two possible answers are:
• When they are syntactically identical.
• When they are semantically equivalent: they produce the same value.

For example, are 42 and 41+1 equal? The syntactic answer would say they are not, because they involve different tokens.
The semantic answer would say they are: they both produce the value 42.
What about functions: are fun x -> x and fun y -> y equal? Syntactically they are different. But semantically,
they both produce a value that is the identity function: when they are applied to an input, they will both produce the same
output. That is, (fun x -> x) z = z, and (fun y -> y) z = z. If it is the case that for all inputs two
functions produce the same output, we will consider the functions to be equal:

if (forall x, f x = g x), then f = g.

That definition of equality for functions is known as the Axiom of Extensionality in some branches of mathematics;
henceforth we’ll refer to it simply as “extensionality”.
Here we will adopt the semantic approach. If e1 and e2 evaluate to the same value v, then we write e1 = e2. We
are using = here in a mathematical sense of equality, not as the OCaml polymorphic equality operator. For example, we
allow (fun x -> x) = (fun y -> y), even though OCaml’s operator would raise an exception and refuse to
compare functions.
We’re also going to restrict ourselves to expressions that are well-typed, pure (meaning they have no side effects), and
total (meaning they don’t have exceptions or infinite loops).

8.7.2 Equational Reasoning

Consider these functions:

let twice f x = f (f x)
let compose f g x = f (g x)

val twice : ('a -> 'a) -> 'a -> 'a = <fun>

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

We know from the rules of OCaml evaluation that twice h x = h (h x), and likewise, compose h h x = h
(h x). Thus we have:

twice h x = h (h x) = compose h h x

Therefore, we can conclude that twice h x = compose h h x. And by extensionality we can simplify that
equality: Since twice h x = compose h h x holds for all x, we can conclude twice h = compose h h.
As another example, suppose we define an infix operator for function composition:

let ( << ) = compose

Then we can prove that composition is associative, using equational reasoning:
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Theorem: (f << g) << h = f << (g << h)

Proof: By extensionality, we need to show
((f << g) << h) x = (f << (g << h)) x

for an arbitrary x.

((f << g) << h) x
= (f << g) (h x)
= f (g (h x))

and

(f << (g << h)) x
= f ((g << h) x)
= f (g (h x))

So ((f << g) << h) x = f (g (h x)) = (f << (g << h)) x.

QED

All of the steps in the equational proof above follow from evaluation. Another format for writing the proof would provide
hints as to why each step is valid:

((f << g) << h) x
= { evaluation of << }

(f << g) (h x)
= { evaluation of << }

f (g (h x))

and

(f << (g << h)) x
= { evaluation of << }

f ((g << h) x)
= { evaluation of << }

f (g (h x))

8.7.3 Induction on Natural Numbers

The following function sums the non-negative integers up to n:

let rec sumto n =
if n = 0 then 0 else n + sumto (n - 1)

val sumto : int -> int = <fun>

You might recall that the same summation can be expressed in closed form as n * (n + 1) / 2. To prove that
forall n >= 0, sumto n = n * (n + 1) / 2, we will need mathematical induction.
Recall that induction on the natural numbers (i.e., the non-negative integers) is formulated as follows:

forall properties P,
if P(0),

(continues on next page)
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(continued from previous page)

and if forall k, P(k) implies P(k + 1),
then forall n, P(n)

That is called the induction principle for natural numbers. The base case is to prove P(0), and the inductive case is to
prove that P(k + 1) holds under the assumption of the inductive hypothesis P(k).
Let’s use induction to prove the correctness of sumto.

Claim: sumto n = n * (n + 1) / 2

Proof: by induction on n.
P(n) = sumto n = n * (n + 1) / 2

Base case: n = 0
Show: sumto 0 = 0 * (0 + 1) / 2

sumto 0
= { evaluation }

0
= { algebra }

0 * (0 + 1) / 2

Inductive case: n = k + 1
Show: sumto (k + 1) = (k + 1) * ((k + 1) + 1) / 2
IH: sumto k = k * (k + 1) / 2

sumto (k + 1)
= { evaluation }

k + 1 + sumto k
= { IH }

k + 1 + k * (k + 1) / 2
= { algebra }

(k + 1) * (k + 2) / 2

QED

Note that we have been careful in each of the cases to write out what we need to show, as well as to write down the
inductive hypothesis. It is important to show all this work.
Suppose we now define:

let sumto_closed n = n * (n + 1) / 2

val sumto_closed : int -> int = <fun>

Then as a corollary to our previous claim, by extensionality we can conclude

sumto_closed = sumto

Technically that equality holds only inputs that are natural numbers. But since all our examples henceforth will be for
naturals, not integers per se, we will elide stating any preconditions or restrictions regarding natural numbers.
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8.7.4 Programs as Specifications

Wehave just proved the correctness of an efficient implementation relative to an inefficient implementation. The inefficient
implementation, sumto, serves as a specification for the efficient implementation, sumto_closed.
That technique is common in verifying functional programs: write an obviously correct implementation that is lacking in
some desired property, such as efficiency, then prove that a better implementation is equal to the original.
Let’s do another example of this kind of verification. This time, well use the factorial function.
The simple, obviously correct implementation of factorial would be:

let rec fact n =
if n = 0 then 1 else n * fact (n - 1)

val fact : int -> int = <fun>

A tail-recursive implementation would be more efficient about stack space:

let rec facti acc n =
if n = 0 then acc else facti (acc * n) (n - 1)

let fact_tr n = facti 1 n

val facti : int -> int -> int = <fun>

val fact_tr : int -> int = <fun>

The i in the name facti stands for iterative. We call this an iterative implementation because it strongly resembles how
the same computation would be expressed using a loop (that is, an iteration construct) in an imperative language. For
example, in Java we might write:

int facti (int n) {
int acc = 1;
while (n != 0) {
acc *= n;
n--;

}
return acc;

}

Both the OCaml and Java implementation of facti share these features:
• they start acc at 1
• they check whether n is 0
• they multiply acc by n
• they decrement n
• they return the accumulator, acc

Let’s try to prove that fact_tr correctly implements the same computation as fact.
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Claim: forall n, fact n = fact_tr n

Since fact_tr n = facti 1 n, it suffices to show fact n = facti 1 n.

Proof: by induction on n.
P(n) = fact n = facti 1 n

Base case: n = 0
Show: fact 0 = facti 1 0

fact 0
= { evaluation }

1
= { evaluation }

facti 1 0

Inductive case: n = k + 1
Show: fact (k + 1) = facti 1 (k + 1)
IH: fact k = facti 1 k

fact (k + 1)
= { evaluation }

(k + 1) * fact k
= { IH }

(k + 1) * facti 1 k

facti 1 (k + 1)
= { evaluation }

facti (1 * (k + 1)) k
= { evaluation }

facti (k + 1) k

Unfortunately, we're stuck. Neither side of what we want to show
can be manipulated any further.

ABORT

We know that facti (k + 1) k and (k + 1) * facti 1 k should yield the same value. But the IH allows
us only to use 1 as the second argument to facti, instead of a bigger argument like k + 1. So our proof went astray
the moment we used the IH. We need a stronger inductive hypothesis!
So let’s strengthen the claim we are making. Instead of showing that fact n = facti 1 n, we’ll try to show
forall p, p * fact n = facti p n. That generalizes the k + 1 we were stuck on to an arbitrary quantity
p.

Claim: forall n, forall p . p * fact n = facti p n

Proof: by induction on n.
P(n) = forall p, p * fact n = facti p n

Base case: n = 0
Show: forall p, p * fact 0 = facti p 0

p * fact 0
= { evaluation and algebra }

p
= { evaluation }

(continues on next page)
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(continued from previous page)

facti p 0

Inductive case: n = k + 1
Show: forall p, p * fact (k + 1) = facti p (k + 1)
IH: forall p, p * fact k = facti p k

p * fact (k + 1)
= { evaluation }

p * (k + 1) * fact k
= { IH, instantiating its p as p * (k + 1) }

facti (p * (k + 1)) k

facti p (k + 1)
= { evaluation }

facti (p * (k + 1)) k

QED

Claim: forall n, fact n = fact_tr n

Proof:

fact n
= { algebra }

1 * fact n
= { previous claim }

facti 1 n
= { evaluation }

fact_tr n

QED

That finishes our proof that the efficient, tail-recursive function fact_tr is equivalent to the simple, recursive function
fact. In essence, we have proved the correctness of fact_tr using fact as its specification.

8.7.5 Recursion vs. Iteration

We added an accumulator as an extra argument to make the factorial function be tail recursive. That’s a trick we’ve seen
before. Let’s abstract and see how to do it in general.
Suppose we have a recursive function over integers:

let rec f_r n =
if n = 0 then i else op n (f_r (n - 1))

Here, the r in f_r is meant to suggest that f_r is a recursive function. The i and op are pieces of the function that are
meant to be replaced by some concrete value i and operator op. For example, with the factorial function, we have:

f_r = fact
i = 1
op = ( * )

Such a function can be made tail recursive by rewriting it as follows:
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let rec f_i acc n =
if n = 0 then acc
else f_i (op acc n) (n - 1)

let f_tr = f_i i

Here, the i in f_i is meant to suggest that f_i is an iterative function, and i and op are the same as in the recursive
version of the function. For example, with factorial we have:

f_i = fact_i
i = 1
op = ( * )
f_tr = fact_tr

We can prove that f_r and f_tr compute the same function. During the proof, next, we will discover certain conditions
that must hold of i and op to make the transformation to tail recursion be correct.

Theorem: f_r = f_tr

Proof: By extensionality, it suffices to show that forall n, f_r n = f_tr n.

As in the previous proof for fact, we will need a strengthened induction
hypothesis. So we first prove this lemma, which quantifies over all accumulators
that could be input to f_i, rather than only i:

Lemma: forall n, forall acc, op acc (f_r n) = f_i acc n

Proof of Lemma: by induction on n.
P(n) = forall acc, op acc (f_r n) = f_i acc n

Base: n = 0
Show: forall acc, op acc (f_r 0) = f_i acc 0

op acc (f_r 0)
= { evaluation }
op acc i

= { if we assume forall x, op x i = x }
acc

f_i acc 0
= { evaluation }
acc

Inductive case: n = k + 1
Show: forall acc, op acc (f_r (k + 1)) = f_i acc (k + 1)
IH: forall acc, op acc (f_r k) = f_i acc k

op acc (f_r (k + 1))
= { evaluation }
op acc (op (k + 1) (f_r k))

= { if we assume forall x y z, op x (op y z) = op (op x y) z }
op (op acc (k + 1)) (f_r k)

f_i acc (k + 1)
= { evaluation }
f_i (op acc (k + 1)) k

(continues on next page)
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(continued from previous page)

= { IH, instantiating acc as op acc (k + 1)}
op (op acc (k + 1)) (f_r k)

QED

The proof then follows almost immediately from the lemma:

f_r n
= { if we assume forall x, op i x = x }

op i (f_r n)
= { lemma, instantiating acc as i }

f_i i n
= { evaluation }

f_tr n

QED

Along the way we made three assumptions about i and op:
1. forall x, op x i = x

2. op x (op y z) = op (op x y) z

3. forall x, op i x = x

The first and third say that i is an identity of op: using it on the left or right side leaves the other argument x unchanged.
The second says that op is associative. Both those assumptions held for the values we used in the factorial functions:

• op is multiplication, which is associative.
• i is 1, which is an identity of multiplication: multiplication by 1 leaves the other argument unchanged.

So our transformation from a recursive to a tail-recursive function is valid as long as the operator applied in the recursive
call is associative, and the value returned in the base case is an identity of that operator.
Returning to the sumto function, we can apply the theorem we just proved to immediately get a tail-recursive version:

let rec sumto_r n =
if n = 0 then 0 else n + sumto_r (n - 1)

val sumto_r : int -> int = <fun>

Here, the operator is addition, which is associative; and the base case is zero, which is an identity of addition. Therefore
our theorem applies, and we can use it to produce the tail-recursive version without even having to think about it:

let rec sumto_i acc n =
if n = 0 then acc else sumto_i (acc + n) (n - 1)

let sumto_tr = sumto_i 0

val sumto_i : int -> int -> int = <fun>

val sumto_tr : int -> int = <fun>

We already know that sumto_tr is correct, thanks to our theorem.
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8.7.6 Termination

Sometimes correctness of programs is further divided into:
• partial correctness: meaning that if a program terminates, then its output is correct; and
• total correctness: meaning that a program does terminate, and its output is correct.

Total correctness is therefore the conjunction of partial correctness and termination. Thus far, we have been proving
partial correctness.
To prove that a program terminates is difficult. Indeed, it is impossible in general for an algorithm to do so: a computer
can’t precisely decide whether a program will terminate. (Look up the “halting problem” for more details.) But, a smart
human sometimes can do so.
There is a simple heuristic that can be used to show that a recursive function terminates:

• All recursive calls are on a “smaller” input, and
• all base cases are terminating.

For example, consider the factorial function:

let rec fact n =
if n = 0 then 1
else n * fact (n - 1)

val fact : int -> int = <fun>

The base case, 1, obviously terminates. The recursive call is on n - 1, which is a smaller input than the original n. So
fact always terminates (as long as its input is a natural number).
The same reasoning applies to all the other functions we’ve discussed above.
To make this more precise, we need a notion of what it means to be smaller. Suppose we have a binary relation < on
inputs. Despite the notation, this relation need not be the less-than relation on integers—although that will work for fact.
Also suppose that it is never possible to create an infinite sequence x0 > x1 > x2 > x3 ... of elements using this
relation. (Where of course a > b if and only if b < a.) That is, there are no infinite descending chains of elements:
once you pick a starting element x0, there can be only a finite number of “descents” according to the < relation before
you bottom out and hit a base case. This property of < makes it a well-founded relation.
So, a recursive function terminates if all its recursive calls are on elements that are smaller according to <. Why? Because
there can be only a finite number of calls before a base case is reached, and base cases must terminate.
The usual < relation is well-founded on the natural numbers, because eventually any chain must reach the base case of 0.
But it is not well-founded on the integers, which can get just keep getting smaller: -1 > -2 > -3 > ....
Here’s an interesting function for which the usual < relation doesn’t suffice to prove termination:

let rec ack = function
| (0, n) -> n + 1
| (m, 0) -> ack (m - 1, 1)
| (m, n) -> ack (m - 1, ack (m, n - 1))

val ack : int * int -> int = <fun>

This is known as Ackermann’s function. It grows faster than any exponential function. Try running ack (1, 1), ack
(2, 1), ack (3, 1), then ack (4, 1) to get a sense of that. It also is a famous example of a function that can
be implemented with while loops but not with for loops. Nonetheless, it does terminate.
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To show that, the base case is easy: when the input is (0, _), the function terminates. But in other cases, it makes a
recursive call, and we need to define an appropriate < relation. It turns out lexicographic ordering on pairs works. Define
(a, b) < (c, d) if:

• a < c, or
• a = c and b < d.

The < order in those two cases is the usual < on natural numbers.
In the first recursive call, (m - 1, 1) < (m, 0) by the first case of the definition of <, because m - 1 < m. In
the nested recursive call ack (m - 1, ack (m, n - 1)), both cases are needed:

• (m, n - 1) < (m, n) because m = m and n - 1 < n

• (m - 1, _) < (m, n) because m - 1 < m.

8.8 Structural Induction

So far we’ve proved the correctness of recursive functions on natural numbers. We can do correctness proofs about
recursive functions on variant types, too. That requires us to figure out how induction works on variants. We’ll do that,
next, starting with a variant type for representing natural numbers, then generalizing to lists, trees, and other variants.
This inductive proof technique is sometimes known as structural induction instead of mathematical induction. But that’s
just a piece of vocabulary; don’t get hung up on it. The core idea is completely the same.

8.8.1 Induction on Naturals

We used OCaml’s int type as a representation of the naturals. Of course, that type is somewhat of a mismatch: negative
int values don’t represent naturals, and there is an upper bound to what natural numbers we can represent with int.
Let’s fix those problems by defining our own variant to represent natural numbers:

type nat = Z | S of nat

type nat = Z | S of nat

The constructor Z represents zero; and the constructor S represents the successor of another natural number. So,
• 0 is represented by Z,
• 1 by S Z,
• 2 by S (S Z),
• 3 by S (S (S Z)),

and so forth. This variant is thus a unary (as opposed to binary or decimal) representation of the natural numbers: the
number of times S occurs in a value n : nat is the natural number that n represents.
We can define addition on natural numbers with the following function:

let rec plus a b =
match a with
| Z -> b
| S k -> S (plus k b)
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val plus : nat -> nat -> nat = <fun>

Immediately we can prove the following rather trivial claim:

Claim: plus Z n = n

Proof:

plus Z n
= { evaluation }

n

QED

But suppose we want to prove this also trivial-seeming claim:

Claim: plus n Z = n

Proof:

plus n Z
=

???

We can’t just evaluate plus n Z, because plus matches against its first argument, not second. One possibility would
be to do a case analysis: what if n is Z, vs. S k for some k? Let’s attempt that.

Proof:

By case analysis on n, which must be either Z or S k.

Case: n = Z

plus Z Z
= { evaluation }

Z

Case: n = S k

plus (S k) Z
= { evaluation }

S (plus k Z)
=

???

We are again stuck, and for the same reason: once more plus can’t be evaluated any further.
When you find yourself needing to solve the same subproblem in programming, you use recursion. When it happens in a
proof, you use induction!
We’ll need an induction principle for nat. Here it is:

forall properties P,
if P(Z),
and if forall k, P(k) implies P(S k),
then forall n, P(n)
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Compare that to the induction principle we used for natural numbers before, when we were using int in place of natural
numbers:

forall properties P,
if P(0),
and if forall k, P(k) implies P(k + 1),
then forall n, P(n)

There’s no essential difference between the two: we just use Z in place of 0, and S k in place of k + 1.
Using that induction principle, we can carry out the proof:

Claim: plus n Z = n

Proof: by induction on n.
P(n) = plus n Z = n

Base case: n = Z
Show: plus Z Z = Z

plus Z Z
= { evaluation }

Z

Inductive case: n = S k
IH: plus k Z = k
Show: plus (S k) Z = S k

plus (S k) Z
= { evaluation }

S (plus k Z)
= { IH }

S k

QED

8.8.2 Induction on Lists

It turns out that natural numbers and lists are quite similar, when viewed as data types. Here are the definitions of both,
aligned for comparison:

type nat = Z | S of nat
type 'a list = [] | ( :: ) of 'a * 'a list

Both types have a constructor representing a concept of “nothing”. Both types also have a constructor representing “one
more” than another value of the type: S n is one more than n, and h :: t is a list with one more element than t.
The induction principle for lists is likewise quite similar to the induction principle for natural numbers. Here is the
principle for lists:

forall properties P,
if P([]),
and if forall h t, P(t) implies P(h :: t),
then forall lst, P(lst)

An inductive proof for lists therefore has the following structure:
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Proof: by induction on lst.
P(lst) = ...

Base case: lst = []
Show: P([])

Inductive case: lst = h :: t
IH: P(t)
Show: P(h :: t)

Let’s try an example of this kind of proof. Recall the definition of the append operator:

let rec append lst1 lst2 =
match lst1 with
| [] -> lst2
| h :: t -> h :: append t lst2

let ( @ ) = append

val append : 'a list -> 'a list -> 'a list = <fun>

val ( @ ) : 'a list -> 'a list -> 'a list = <fun>

We’ll prove that append is associative.

Theorem: forall xs ys zs, xs @ (ys @ zs) = (xs @ ys) @ zs

Proof: by induction on xs.
P(xs) = forall ys zs, xs @ (ys @ zs) = (xs @ ys) @ zs

Base case: xs = []
Show: forall ys zs, [] @ (ys @ zs) = ([] @ ys) @ zs

[] @ (ys @ zs)
= { evaluation }

ys @ zs
= { evaluation }

([] @ ys) @ zs

Inductive case: xs = h :: t
IH: forall ys zs, t @ (ys @ zs) = (t @ ys) @ zs
Show: forall ys zs, (h :: t) @ (ys @ zs) = ((h :: t) @ ys) @ zs

(h :: t) @ (ys @ zs)
= { evaluation }

h :: (t @ (ys @ zs))
= { IH }

h :: ((t @ ys) @ zs)

((h :: t) @ ys) @ zs
= { evaluation of inner @ }

(h :: (t @ ys)) @ zs
= { evaluation of outer @ }

h :: ((t @ ys) @ zs)

(continues on next page)
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(continued from previous page)

QED

8.8.3 A Theorem about Folding

When we studied List.fold_left and List.fold_right, we discussed how they sometimes compute the same
function, but in general do not. For example,

List.fold_left ( + ) 0 [1; 2; 3]
= (((0 + 1) + 2) + 3
= 6
= 1 + (2 + (3 + 0))
= List.fold_right ( + ) [1; 2; 3] 0

but

List.fold_left ( - ) 0 [1; 2; 3]
= (((0 - 1) - 2) - 3
= -6
<> 2
= 1 - (2 - (3 - 0))
= List.fold_right ( - ) [1; 2; 3] 0

Based on the equations above, it looks like the fact that + is commutative and associative, whereas - is not, explains this
difference between when the two fold functions get the same answer. Let’s prove it!
First, recall the definitions of the fold functions:

let rec fold_left f acc lst =
match lst with
| [] -> acc
| h :: t -> fold_left f (f acc h) t

let rec fold_right f lst acc =
match lst with
| [] -> acc
| h :: t -> f h (fold_right f t acc)

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

Second, recall what it means for a function f : 'a -> 'a to be commutative and associative:

Commutative: forall x y, f x y = f y x
Associative: forall x y z, f x (f y z) = f (f x y) z

Those might look a little different than the normal formulations of those properties, because we are using f as a prefix
operator. If we were to write f instead as an infix operator op, they would look more familiar:

Commutative: forall x y, x op y = y op x
Associative: forall x y z, x op (y op z) = (x op y) op z
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When f is both commutative and associative we have this little interchange lemma that lets us swap two arguments around:

Lemma (interchange): f x (f y z) = f y (f x z)

Proof:

f x (f y z)
= { associativity }

f (f x y) z
= { commutativity }

f (f y x) z
= { associativity }

f y (f x z)

QED

Now we’re ready to state and prove the theorem.

Theorem: If f is commutative and associative, then
forall lst acc,
fold_left f acc lst = fold_right f lst acc.

Proof: by induction on lst.
P(lst) = forall acc,

fold_left f acc lst = fold_right f lst acc

Base case: lst = []
Show: forall acc,

fold_left f acc [] = fold_right f [] acc

fold_left f acc []
= { evaluation }

acc
= { evaluation }

fold_right f [] acc

Inductive case: lst = h :: t
IH: forall acc,

fold_left f acc t = fold_right f t acc
Show: forall acc,

fold_left f acc (h :: t) = fold_right f (h :: t) acc

fold_left f acc (h :: t)
= { evaluation }

fold_left f (f acc h) t
= { IH with acc := f acc h }

fold_right f t (f acc h)

fold_right f (h :: t) acc
= { evaluation }

f h (fold_right f t acc)

Now, it might seem as though we are stuck: the left and right sides of the equality we want to show have failed to “meet
in the middle.” But we’re actually in a similar situation to when we proved the correctness of facti earlier: there’s
something (applying f to h and another argument) that we want to push into the accumulator of that last line (so that we
have f acc h).
Let’s try proving that with its own lemma:
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Lemma: forall lst acc x,
f x (fold_right f lst acc) = fold_right f lst (f acc x)

Proof: by induction on lst.
P(lst) = forall acc x,

f x (fold_right f lst acc) = fold_right f lst (f acc x)

Base case: lst = []
Show: forall acc x,

f x (fold_right f [] acc) = fold_right f [] (f acc x)

f x (fold_right f [] acc)
= { evaluation }

f x acc

fold_right f [] (f acc x)
= { evaluation }

f acc x
= { commutativity of f }

f x acc

Inductive case: lst = h :: t
IH: forall acc x,

f x (fold_right f t acc) = fold_right f t (f acc x)
Show: forall acc x,

f x (fold_right f (h :: t) acc) = fold_right f (h :: t) (f acc x)

f x (fold_right f (h :: t) acc)
= { evaluation }

f x (f h (fold_right f t acc))
= { interchange lemma }

f h (f x (fold_right f t acc))
= { IH }

f h (fold_right f t (f acc x))

fold_right f (h :: t) (f acc x)
= { evaluation }

f h (fold_right f t (f acc x))

QED

Now that the lemma is completed, we can resume the proof of the theorem. We’ll restart at the beginning of the inductive
case:

Inductive case: lst = h :: t
IH: forall acc,

fold_left f acc t = fold_right f t acc
Show: forall acc,

fold_left f acc (h :: t) = fold_right f (h :: t) acc

fold_left f acc (h :: t)
= { evaluation }

fold_left f (f acc h) t
= { IH with acc := f acc h }

fold_right f t (f acc h)

(continues on next page)
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(continued from previous page)

fold_right f (h :: t) acc
= { evaluation }

f h (fold_right f t acc)
= { lemma with x := h and lst := t }

fold_right f t (f acc h)

QED

It took two inductions to prove the theorem, but we succeeded! Nowwe know that the behavior we observed with +wasn’t
a fluke: any commutative and associative operator causes fold_left and fold_right to get the same answer.

8.8.4 Induction on Trees

Lists and binary trees are similar when viewed as data types. Here are the definitions of both, aligned for comparison:

type 'a list = [] | ( :: ) of 'a * 'a list
type 'a tree = Leaf | Node of 'a tree * 'a * 'a tree

type 'a list = [] | (::) of 'a * 'a list

type 'a tree = Leaf | Node of 'a tree * 'a * 'a tree

Both have a constructor that represents “empty”, and both have a constructor that combines a value of type 'a together
with another instance of the data type. The only real difference is that ( :: ) takes just one list, whereas Node takes
two trees.
The induction principle for binary trees is therefore very similar to the induction principle for lists, except that with binary
trees we get two inductive hypotheses, one for each subtree:

forall properties P,
if P(Leaf),
and if forall l v r, (P(l) and P(r)) implies P(Node (l, v, r)),
then forall t, P(t)

An inductive proof for binary trees therefore has the following structure:

Proof: by induction on t.
P(t) = ...

Base case: t = Leaf
Show: P(Leaf)

Inductive case: t = Node (l, v, r)
IH1: P(l)
IH2: P(r)
Show: P(Node (l, v, r))

Let’s try an example of this kind of proof. Here is a function that creates the mirror image of a tree, swapping its left and
right subtrees at all levels:
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let rec reflect = function
| Leaf -> Leaf
| Node (l, v, r) -> Node (reflect r, v, reflect l)

val reflect : 'a tree -> 'a tree = <fun>

For example, these two trees are reflections of each other:

1 1
/ \ / \
2 3 3 2

/ \ / \ / \ / \
4 5 6 7 7 6 5 4

If you take the mirror image of a mirror image, you should get the original back. That means reflection is an involution,
which is any function f such that f (f x) = x. Another example of an involution is multiplication by negative one
on the integers.
Let’s prove that reflect is an involution.

Claim: forall t, reflect (reflect t) = t

Proof: by induction on t.
P(t) = reflect (reflect t) = t

Base case: t = Leaf
Show: reflect (reflect Leaf) = Leaf

reflect (reflect Leaf)
= { evaluation }

reflect Leaf
= { evaluation }

Leaf

Inductive case: t = Node (l, v, r)
IH1: reflect (reflect l) = l
IH2: reflect (reflect r) = r
Show: reflect (reflect (Node (l, v, r))) = Node (l, v, r)

reflect (reflect (Node (l, v, r)))
= { evaluation }

reflect (Node (reflect r, v, reflect l))
= { evaluation }

Node (reflect (reflect l), v, reflect (reflect r))
= { IH1 }

Node (l, v, reflect (reflect r))
= { IH2 }

Node (l, v, r)

QED

Induction on trees is really no more difficult than induction on lists or natural numbers. Just keep track of the inductive
hypotheses, using our stylized proof notation, and it isn’t hard at all.
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8.8.5 Induction Principles for All Variants

We’ve now seen induction principles for nat, list, and tree. Generalizing from what we’ve seen, each constructor
of a variant either generates a base case for the inductive proof, or an inductive case. And, if a constructor itself carries
values of that data type, each of those values generates an inductive hypothesis. For example:

• Z, [], and Leaf all generated base cases.
• S, ::, and Node all generated inductive cases.
• S and :: each generated one IH, because each carries one value of the data type.
• Node generated two IHs, because it carries two values of the data type.

As an example of an induction principle for a more complicated type, let’s consider a type that represents the syntax of a
mathematical expression. You might recall from an earlier data structures course that trees can be used for that purpose.
Suppose we have the following expr type, which is a kind of tree, to represent expressions with integers, Booleans, unary
operators, and binary operators:

type uop =
| UMinus

type bop =
| BPlus
| BMinus
| BLeq

type expr =
| Int of int
| Bool of bool
| Unop of uop * expr
| Binop of expr * bop * expr

For example, the expression 5 < 6 would be represented as Binop (Int 5, BLeq, Int 6). We’ll see more
examples of this kind of representation later in the book when we study interpreters.
The induction principle for expr is:

forall properties P,
if forall i, P(Int i)
and forall b, P(Bool b)
and forall u e, P(e) implies P(Unop (u, e))
and forall b e1 e2, (P(e1) and P(e2)) implies P(Binop (e1, b, e2))
then forall e, P(e)

There are two base cases, corresponding to the two constructors that don’t carry an expr. There are two inductive cases,
corresponding to the two constructors that do carry exprs. Unop gets one IH, whereas Binop gets two IHs, because
of the number of exprs that each carries.
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8.8.6 Induction and Recursion

Inductive proofs and recursive programs bear a striking similarity. In a sense, an inductive proof is a recursive program
that shows how to construct evidence for a theorem involving an algebraic data type (ADT). The structure of an ADT
determines the structure of proofs and programs:

• The constructors of an ADT are the organizational principle of both proofs and programs. In a proof, we have a
base or inductive case for each constructor. In a program, we have a pattern-matching case for each constructor.

• The use of recursive types in an ADT determine where recursion occurs in both proofs and programs. By “re-
cursive type”, we mean the occurrence of the type in its own definition, such as the second 'a list in type
'a list = [] | ( :: ) 'a * 'a list. Such occurrences lead to “smaller” values of a type
occurring inside larger values. In a proof, we apply the inductive hypothesis upon reaching such a smaller value.
In a program, we recurse on the smaller value.

8.9 Equational Specification

Next let’s tackle a bigger challenge: proving the correctness of a data structure, such as a stack, queue, or set.
Correctness proofs always need specifications. In proving the correctness of iterative factorial, we used recursive factorial
as a specification. By analogy, we could provide two implementations of a data structure—one simple, the other complex
and efficient—and prove that the two are equivalent. That would require us to introduce ways to translate between the two
implementations. For example, we could prove the correctness of a map implemented with an efficient balanced binary
search tree relative to an implementation as an inefficient association list, by defining functions to convert trees to lists.
Such an approach is certainly valid, but it doesn’t lead to new ideas about verification for us to study.
Instead, we will pursue a different approach based on equational specifications, aka algebraic specifications. The idea with
these is to

• define the types of the data structure operations, and
• to write a set of equations that define how the operations interact with one another.

The reason the word “algebra” shows up here is (in part) that this type-and-equation based approach is something we
learned in high-school algebra. For example, here is a specification for some operators:

0 : int
1 : int
- : int -> int
+ : int -> int -> int
* : int -> int -> int

(a + b) + c = a + (b + c)
a + b = b + a
a + 0 = a
a + (-a) = 0
(a * b) * c = a * (b * c)
a * b = b * a
a * 1 = a
a * 0 = 0
a * (b + c) = a * b + a * c

The types of those operators, and the associated equations, are facts learned when studying algebra.
Our goal is now to write similar specifications for data structures, and use them to reason about the correctness of imple-
mentations.
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8.9.1 Example: Stacks

Here are a few familiar operations on stacks along with their types.

module type Stack = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val peek : 'a t -> 'a
val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a t

end

As usual, there is a design choice to be made with peek etc. about what to do with empty stacks. Here we have not
used option, which suggests that peek will raise an exception on the empty stack. So we are cautiously relaxing our
prohibition on exceptions.
In the past we’ve given these operations specifications in English, e.g.,

(** [push x s] is the stack [s] with [x] pushed on the top. *)
val push : 'a -> 'a stack -> 'a stack

But now, we’ll write some equations to describe how the operations work:

1. is_empty empty = true
2. is_empty (push x s) = false
3. peek (push x s) = x
4. pop (push x s) = s

(Later we’ll return to the question of how to design such equations.) The variables appearing in these equations are
implicitly universally quantified. Here’s how to read each equation:

1. is_empty empty = true. The empty stack is empty.
2. is_empty (push x s) = false. A stack that has just been pushed is non-empty.
3. peek (push x s) = x. Pushing then immediately peeking yields whatever value was pushed.
4. pop (push x s) = s. Pushing then immediately popping yields the original stack.

Just with these equations alone, we already can deduce a lot about how any sequence of stack operations must work. For
example,

peek (pop (push 1 (push 2 empty)))
= { equation 4 }

peek (push 2 empty)
= { equation 3 }

2

And peek empty doesn’t equal any value according to the equations, since there is no equation of the form peek
empty = .... All that is true regardless of the stack implementation that is chosen: any correct implementation must
cause the equations to hold.
Suppose we implemented stacks as lists, as follows:

module ListStack = struct
type 'a t = 'a list
let empty = []

(continues on next page)
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(continued from previous page)

let is_empty = function [] -> true | _ -> false
let peek = List.hd
let push = List.cons
let pop = List.tl

end

Next we could prove that each equation holds of the implementation. All these proofs are quite easy by now, and proceed
entirely by evaluation. For example, here’s a proof of equation 3:

peek (push x s)
= { evaluation }

peek (x :: s)
= { evaluation }

x

8.9.2 Example: Queues

Stacks were easy. How about queues? Here is the specification:

module type Queue = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val front : 'a t -> 'a
val enq : 'a -> 'a t -> 'a t
val deq : 'a t -> 'a t

end

1. is_empty empty = true
2. is_empty (enq x q) = false
3a. front (enq x q) = x if is_empty q = true
3b. front (enq x q) = front q if is_empty q = false
4a. deq (enq x q) = empty if is_empty q = true
4b. deq (enq x q) = enq x (deq q) if is_empty q = false

The types of the queue operations are actually identical to the types of the stack operations. Here they are, side-by-side
for comparison:

module type Stack = sig module type Queue = sig
type 'a t type 'a t
val empty : 'a t val empty : 'a t
val is_empty : 'a t -> bool val is_empty : 'a t -> bool
val peek : 'a t -> 'a val front : 'a t -> 'a
val push : 'a -> 'a t -> 'a t val enq : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a t val deq : 'a t -> 'a t

end end

Look at each line: though the operation may have a different name, its type is the same. Obviously, the types alone don’t
tell us enough about the operations. But the equations do! Here’s how to read each equation:

1. The empty queue is empty.
2. Enqueueing makes a queue non-empty.
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3. Enqueueing x on an empty queue makes x the front element. But if the queue isn’t empty, enqueueing doesn’t
change the front element.

4. Enqueueing then dequeueing on an empty queue leaves the queue empty. But if the queue isn’t empty, the enqueue
and dequeue operations can be swapped.

For example,

front (deq (enq 1 (enq 2 empty)))
= { equations 4b and 2 }

front (enq 1 (deq (enq 2 empty)))
= { equations 4a and 1 }

front (enq 1 empty)
= { equations 3a and 1 }

1

And front empty doesn’t equal any value according to the equations.
Implementing a queue as a list results in an implementation that is easy to verify just with evaluation.

module ListQueue : Queue = struct
type 'a t = 'a list
let empty = []
let is_empty q = q = []
let front = List.hd
let enq x q = q @ [x]
let deq = List.tl

end

module ListQueue : Queue

For example, 4a can be verified as follows:

deq (enq x empty)
= { evaluation of empty and enq}

deq ([] @ [x])
= { evaluation of @ }

deq [x]
= { evaluation of deq }

[]
= { evaluation of empty }

empty

And 4b, as follows:

deq (enq x q)
= { evaluation of enq and deq }

List.tl (q @ [x])
= { lemma, below, and q <> [] }

(List.tl q) @ [x]

enq x (deq q)
= { evaluation }

(List.tl q) @ [x]

Here is the lemma:
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Lemma: if xs <> [], then List.tl (xs @ ys) = (List.tl xs) @ ys.
Proof: if xs <> [], then xs = h :: t for some h and t.

List.tl ((h :: t) @ ys)
= { evaluation of @ }

List.tl (h :: (t @ ys))
= { evaluation of tl }

t @ ys

(List.tl (h :: t)) @ ys
= { evaluation of tl }

t @ ys

QED

Note how the precondition in 3b and 4b of q not being empty ensures that we never have to deal with an exception being
raised in the equational proofs.

8.9.3 Example: Batched Queues

Recall that batched queues represent a queue with two lists:

module BatchedQueue = struct
(* AF: [(o, i)] represents the queue [o @ (List.rev i)].

RI: if [o] is empty then [i] is empty. *)
type 'a t = 'a list * 'a list

let empty = ([], [])

let is_empty (o, i) = if o = [] then true else false

let enq x (o, i) = if o = [] then ([x], []) else (o, x :: i)

let front (o, _) = List.hd o

let deq (o, i) =
match List.tl o with
| [] -> (List.rev i, [])
| t -> (t, i)

end

This implementation is superficially different from the earlier implementation we gave, in that it uses pairs instead of
records, and it raises the built-in exception Failure instead of a custom exception Empty.
Is this implementation correct? We need only verify the equations to find out.
First, a lemma:

Lemma: if is_empty q = true, then q = empty.
Proof: Since is_empty q = true, it must be that q = (f, b) and f = [].
By the RI, it must also be that b = []. Thus q = ([], []) = empty.
QED

Verifying equation 1:
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is_empty empty
= { eval empty }

is_empty ([], [])
= { eval is_empty }

[] = []
= { eval = }

true

Verifying equation 2:

is_empty (enq x q) = false
= { eval enq }

is_empty (if f = [] then [x], [] else f, x :: b)

case analysis: f = []

is_empty (if f = [] then [x], [] else f, x :: b)
= { eval if, f = [] }

is_empty ([x], [])
= { eval is_empty }

[x] = []
= { eval = }

false

case analysis: f = h :: t

is_empty (if f = [] then [x], [] else f, x :: b)
= { eval if, f = h :: t }

is_empty (h :: t, x :: b)
= { eval is_empty }

h :: t = []
= { eval = }

false

Verifying equation 3a:

front (enq x q) = x
= { emptiness lemma }

front (enq x ([], []))
= { eval enq }

front ([x], [])
= { eval front }

x

Verifying equation 3b:

front (enq x q)
= { rewrite q as (h :: t, b), because q is not empty }

front (enq x (h :: t, b))
= { eval enq }

front (h :: t, x :: b)
= { eval front }

h

front q
= { rewrite q as (h :: t, b), because q is not empty }

(continues on next page)
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(continued from previous page)

front (h :: t, b)
= { eval front }

h

Verifying equation 4a:

deq (enq x q)
= { emptiness lemma }

deq (enq x ([], []))
= { eval enq }

deq ([x], [])
= { eval deq }

List.rev [], []
= { eval rev }

[], []
= { eval empty }

empty

Verifying equation 4b:

Show: deq (enq x q) = enq x (deq q) assuming is_empty q = false.
Proof: Since is_empty q = false, q must be (h :: t, b).

Case analysis: t = [], b = []

deq (enq x q)
= { rewriting q as ([h], []) }

deq (enq x ([h], []))
= { eval enq }

deq ([h], [x])
= { eval deq }

List.rev [x], []
= { eval rev }

[x], []

enq x (deq q)
= { rewriting q as ([h], []) }

enq x (deq ([h], []))
= { eval deq }

enq x (List.rev [], [])
= { eval rev }

enq x ([], [])
= { eval enq }

[x], []

Case analysis: t = [], b = h' :: t'

deq (enq x q)
= { rewriting q as ([h], h' :: t') }

deq (enq x ([h], h' :: t'))
= { eval enq }

deq ([h], x :: h' :: t')
= { eval deq }

(List.rev (x :: h' :: t'), [])

(continues on next page)
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(continued from previous page)

enq x (deq q)
= { rewriting q as ([h], h' :: t') }

enq x (deq ([h], h' :: t'))
= { eval deq }

enq x (List.rev (h' :: t'), [])
= { eval enq }

(List.rev (h' :: t'), [x])

STUCK

Wait, we just got stuck! (List.rev (x :: h' :: t'), []) and (List.rev (h' :: t'), [x]) are
different. But, abstractly, they do represent the same queue: (List.rev t') @ [h'; x].
To solve this problem, we will adopt the following equation for representation types:

e = e' if AF(e) = AF(e')

That equation allows us to conclude that the two differing expressions are equal:

AF((List.rev (h' :: t'), [x]))
= { apply AF }

List.rev (h' :: t') @ List.rev [x]
= { rev distributes over @, an exercise in the previous lecture }

List.rev ([x] @ (h' :: t'))
= { eval @ }

List.rev (x :: h' :: t')

AF((List.rev (x :: h' :: t'), []))
= { apply AF }

List.rev (x :: h' :: t') @ List.rev []
= { eval rev }

List.rev (x :: h' :: t') @ []
= { eval @ }

List.rev (x :: h' :: t')

Now we are unstuck:

(List.rev (h' :: t'), [x])
= { AF equation }

(List.rev (x :: h' :: t'), [])

There is one more case analysis remaining to finish the proof:

Case analysis: t = h' :: t'

deq (enq x q)
= { rewriting q as (h :: h' :: t', b) }

deq (enq x (h :: h' :: t', b))
= { eval enq }

deq (h :: h' :: t, x :: b)
= { eval deq }

h' :: t, x :: b

enq x (deq q)
= { rewriting q as (h :: h' :: t', b) }

(continues on next page)
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enq x (deq (h :: h' :: t', b))
= { eval deq }

enq x (h' :: t', b)
= { eval enq }

h' :: t', x :: b

QED

That concludes our verification of the batched queue. Note that we had to add the extra equation involving the abstraction
function to get the proofs to go through:

e = e' if AF(e) = AF(e')

and that we made use of the RI during the proof. The AF and RI really are important!

8.9.4 Designing Equational Specifications

For both stacks and queues we provided some equations as the specification. Designing those equations is, in part, a
matter of thinking hard about the data structure. But there’s more to it than that.
Every value of the data structure is constructed with some operations. For a stack, those operations are empty and push.
There might be some pop operations involved, but those can be eliminated. For example, pop (push 1 (push
2 empty)) is really the same stack as push 2 empty. The latter is the canonical form of that stack: there are
many other ways to construct it, but that is the simplest. Indeed, every possible stack value can be constructed just with
empty and push. Similarly, every possible queue value can be constructed just with empty and enq: if there are deq
operations involved, those can be eliminated.
Let’s categorize the operations of a data structure as follows:

• Generators are those operations involved in creating a canonical form. They return a value of the data structure
type. For example, empty, push, enq.

• Manipulators are operations that create a value of the data structure type, but are not needed to create canonical
forms. For example, pop, deq.

• Queries do not return a value of the data structure type. For example, is_empty, peek, front.
Given such a categorization, we can design the equational specification of a data structure by applying non-generators to
generators. For example: What does is_empty return on empty? on push? What does front return on enq?
What does deq return on enq? Etc.
So if there aren generators andm non-generators of a data structure, wewould begin by trying to createn*m equations, one
for each pair of a generator and non-generator. Each equation would show how to simplify an expression. In some cases
we might need a couple equations, depending on the result of some comparison. For example, in the queue specification,
we have the following equations:

1. is_empty empty = true: this is a non-generator is_empty applied to a generator empty. It reduces just
to a Boolean value, which doesn’t involve the data structure type (queues) at all.

2. is_empty (enq x q) = false: a non-generator is_empty applied to a generator enq. Again it reduces
simply to a Boolean value.

3. There are two subcases.
• front (enq x q) = x, if is_empty q = true. A non-generator front applied to a generator
enq. It reduces to x, which is a smaller expression than the original front (enq x q).
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• front (enq x q) = front q, if is_empty q = false. This similarly reduces to a smaller
expression.

4. Again, there are two subcases.
• deq (enq x q) = empty, if is_empty q = true. This simplifies the original expression by
reducing it to empty.

• deq (enq x q) = enq x (deq q), if is_empty q = false. This simplifies the original
expression by reducing it to a generator applied to a smaller argument, deq q instead of deq (enq x q).

We don’t usually design equations involving pairs of non-generators. Sometimes pairs of generators are needed, though,
as we will see in the next example.
Example: Sets. Here is a small interface for sets:

module type Set = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val add : 'a -> 'a t -> 'a t
val mem : 'a -> 'a t -> bool
val remove : 'a -> 'a t -> 'a t

end

The generators are empty and add. The only manipulator is remove. Finally, is_empty and mem are queries. So
we should expect at least 2 * 3 = 6 equations, one for each pair of generator and non-generator. Here is an equational
specification:

1. is_empty empty = true
2. is_empty (add x s) = false
3. mem x empty = false
4a. mem y (add x s) = true if x = y
4b. mem y (add x s) = mem y s if x <> y
5. remove x empty = empty
6a. remove y (add x s) = remove y s if x = y
6b. remove y (add x s) = add x (remove y s) if x <> y

Consider, though, these two sets:
• add 0 (add 1 empty)

• add 1 (add 0 empty)

They both intuitively represent the set {0,1}. Yet, we cannot prove that those two sets are equal using the above specifi-
cation. We are missing an equation involving two generators:

7. add x (add y s) = add y (add x s)
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8.10 Summary

Documentation and testing are crucial to establishing the truth of what a correct program does. Documentation com-
municates to other humans the intent of the programmer. Testing communicates evidence about the success of the
programmer.
Good documentation provides several pieces: a summary, preconditions, postconditions (including errors), and examples.
Documentation is written for two different audiences, clients and maintainers. The latter needs to know about abstraction
functions and representation invariants.
Testing methodologies include black-box, glass-box, and randomized tests. These are complementary, not orthogonal,
approaches to developing correct code.
Formal methods is an important link between mathematics and computer science. We can use techniques from discrete
math, such as induction, to prove the correctness of functional programs. Equational reasoning makes the proofs relatively
pleasant.
Proving the correctness of imperative programs can be more challenging, because of the need to reason about mutable
state. That can break equational reasoning. Instead, Hoare logic, named for Tony Hoare, is a common formal method for
imperative programs. Dijkstra’s weakest precondition calculus is another.

8.10.1 Terms and Concepts

• abstract value
• abstraction by specification
• abstraction function
• algebraic specification
• asserting
• associative
• base case
• black box
• boundary case
• bug
• canonical form
• client
• code inspection
• code review
• code walkthrough
• comments
• commutative
• commutative diagram
• concrete value
• conditional compilation
• consumer
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• correctness
• data abstraction
• debugging by scientific method
• defensive programming
• equation
• equational reasoning
• example clause
• extensionality
• failure
• fault
• formal methods
• generator
• glass box
• identity
• implementer
• induction
• induction hypothesis
• induction principle
• inductive case
• inputs for classes of output
• inputs that satisfy precondition
• inputs that trigger exceptions
• iterative
• locality
• manipulator
• many to one
• minimal test case
• modifiability
• natural numbers
• pair programming
• partial
• partial correctness
• partial function
• path coverage
• paths through implementation
• paths through specification
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• postcondition
• precondition
• producer
• query
• raises clause
• randomized testing
• regression testing
• rely
• rep ok
• representation invariant
• representation type
• representative inputs
• requires clause
• returns clause
• satisfaction
• social methods
• specification
• testing
• total correctness
• total function
• typical input
• validation
• verification
• well-founded

8.10.2 Further Reading

• Program Development in Java: Abstraction, Specification, and Object-Oriented Design, chapters 3, 5, and 9, by
Barbara Liskov with John Guttag.

• The Functional Approach to Programming, section 3.4. Guy Cousineau and Michel Mauny. Cambridge, 1998.
• ML for the Working Programmer, second edition, chapter 6. L.C. Paulson. Cambridge, 1996.
• Thinking Functionally with Haskell, chapter 6. Richard Bird. Cambridge, 2015.
• Software Foundations, volume 1, chapters Basic, Induction, Lists, Poly. Benjamin Pierce et al. https://
softwarefoundations.cis.upenn.edu/

• “Algebraic Specifications”, Robert McCloskey, https://www.cs.scranton.edu/~mccloske/courses/se507/alg_
specs_lec.html.

• Software Engineering: Theory and Practice, third edition, section 4.5. Shari Lawrence Pfleeger and Joanne M.
Atlee. Prentice Hall, 2006.
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• “Algebraic Semantics”, chapter 12 of Formal Syntax and Semantics of Programming Languages, Kenneth Slonneger
and Barry L. Kurtz, Addison-Wesley, 1995.

• “Algebraic Semantics”, Muffy Thomas. Chapter 6 in Programming Language Syntax and Semantics, David Watt,
Prentice Hall, 1991.

• Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. H. Ehrig and B.Mahr. Springer-Verlag,
1985.

8.10.3 Acknowledgments

Our treatment of formal methods is inspired by and indebted to course materials for Princeton COS 326 by David Walker
et al.
Our example algebraic specifications are based on McCloskey’s. The terminology of “generator”, “manipulator”, and
“query” is based on Pfleeger and Atlee.
Many of our exercises on formal methods are inspired by Software Foundations, volume 1.

8.11 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: spec game [★★★]
Pair up with another programmer and play the specification game with them. Take turns being the specifier and the
devious programmer. Here are some suggested functions you could use:

• num_vowels : string -> int

• is_sorted : 'a list -> bool

• sort : 'a list -> 'a list

• max : 'a list -> 'a

• is_prime : int -> bool

• is_palindrome : string -> bool

• second_largest : int list -> int

• depth : 'a tree -> int

Exercise: poly spec [★★★]
Let’s create a data abstraction for single-variable integer polynomials of the form

𝑐𝑛𝑥𝑛 + ⋯ + 𝑐1𝑥 + 𝑐0.

Let’s assume that the polynomials are dense, meaning that they contain very few coefficients that are zero. Here is an
incomplete interface for polynomials:
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(** [Poly] represents immutable polynomials with integer coefficients. *)
module type Poly = sig

(** [t] is the type of polynomials. *)
type t

(** [eval x p] is [p] evaluated at [x]. Example: if [p] represents
$3x^3 + x^2 + x$, then [eval 10 p] is [3110]. *)

val eval : int -> t -> int
end

Finish the design of Poly by adding more operations to the interface. Consider what operations would be useful to a
client of the abstraction:

• How would they create polynomials?
• How would they combine polynomials to get new polynomials?
• How would they query a polynomial to find out what it represents?

Write specification comments for the operations that you invent. Keep in mind the spec game as you write them: could a
devious programmer subvert your intentions?

Exercise: poly impl [★★★]
Implement your specification of Poly. As part of your implementation, you will need to choose a representation type t.
Hint: recalling that our polynomials are dense might guide you in choosing a representation type that makes for an easier
implementation.

Exercise: interval arithmetic [★★★★]
Specify and implement a data abstraction for interval arithmetic. Be sure to include the abstraction function, representation
invariant, and rep_ok. Also implement a to_string function and a format that can be installed in the top level
with #install_printer.

Exercise: function maps [★★★★]
Implement a map (aka dictionary) data structure with abstract type ('k, 'v) t. As the representation type, use 'k
-> 'v. That is, a map is represented as an OCaml function from keys to values. Document the AF. You do not need an
RI. Your solution will make heavy use of higher-order functions. Provide at least these values and operations: empty,
mem, find, add, remove.

Exercise: set black box [★★★]
Go back to the implementation of sets with lists in the previous chapter. Based on the specification comments of Set,
write an OUnit test suite for ListSet that does black-box testing of all its operations.

Exercise: set glass box [★★★]
Achieve as close to 100% code coverage with Bisect as you can for ListSet and UniqListSet.

Exercise: random lists [★★★]
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Use QCheck.Gen.generate1 to generate a list whose length is between 5 and 10, and whose elements are integers
between 0 and 100. Then use QCheck.Gen.generate to generate a 3-element list, each element of which is a list
of the kind you just created with generate1.
Then use QCheck.make to create an arbitrary that represents a list whose length is between 5 and 10, and whose
elements are integers between 0 and 100. The type of your arbitrary should be int list QCheck.arbitrary.
Finally, create and run a QCheck test that checks whether at least one element of an arbitrary list (of 5 to 10 elements,
each between 0 and 100) is even. You’ll need to “upgrade” the is_even property to work on a list of integers rather
than a single integer.
Each time you run the test, recall that it will generate 100 lists and check the property of them. If you run the test many
times, you’ll likely see some successes and some failures.

Exercise: qcheck odd divisor [★★★]
Here is a buggy function:

(** [odd_divisor x] is an odd divisor of [x].
Requires: [x >= 0]. *)

let odd_divisor x =
if x < 3 then 1 else
let rec search y =

if y >= x then y (* exceeded upper bound *)
else if x mod y = 0 then y (* found a divisor! *)
else search (y + 2) (* skip evens *)

in search 3

Write a QCheck test to determine whether the output of that function (on a positive integer, per its precondition; hint:
there is an arbitrary that generates positive integers) is both odd and is a divisor of the input. You will discover that there
is a bug in the function. What is the smallest integer that triggers that bug?

Exercise: qcheck avg [★★★★]
Here is a buggy function:

(** [avg [x1; ...; xn]] is [(x1 + ... + xn) / n].
Requires: the input list is not empty. *)

let avg lst =
let rec loop (s, n) = function
| [] -> (s, n)
| [ h ] -> (s + h, n + 1)
| h1 :: h2 :: t -> if h1 = h2 then loop (s + h1, n + 1) t

else loop (s + h1 + h2, n + 2) t
in
let (s, n) = loop (0, 0) lst
in float_of_int s /. float_of_int n

Write a QCheck test that detects the bug. For the property that you check, construct your own reference implementation
of average—that is, a less optimized version of avg that is obviously correct.

Exercise: exp [★★]
Prove that exp x (m + n) = exp x m * exp x n, where
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let rec exp x n =
if n = 0 then 1 else x * exp x (n - 1)

Proceed by induction on m.

Exercise: fibi [★★★]
Prove that forall n >= 1, fib n = fibi n (0, 1), where

let rec fib n =
if n = 1 then 1
else if n = 2 then 1
else fib (n - 2) + fib (n - 1)

let rec fibi n (prev, curr) =
if n = 1 then curr
else fibi (n - 1) (curr, prev + curr)

Proceed by induction on n, rather than trying to apply the theorem about converting recursion into iteration.

Exercise: expsq [★★★]
Prove that expsq x n = exp x n, where

let rec expsq x n =
if n = 0 then 1
else if n = 1 then x
else (if n mod 2 = 0 then 1 else x) * expsq (x * x) (n / 2)

Proceed by strong induction on n. Function expsq implements exponentiation by repeated squaring, which results in
more efficient computation than exp.

Exercise: expsq simplified [★★★]
Redo the preceding exercise, but with this simplified version of the function. The simplified version requires less code,
but requires an additional recursive call.

let rec expsq' x n =
if n = 0 then 1
else (if n mod 2 = 0 then 1 else x) * expsq' (x * x) (n / 2)

Exercise: mult [★★]
Prove that forall n, mult n Z = Z by induction on n, where:

let rec mult a b =
match a with
| Z -> Z
| S k -> plus b (mult k b)
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Exercise: append nil [★★]
Prove that forall lst, lst @ [] = lst by induction on lst.

Exercise: rev dist append [★★★]
Prove that reverse distributes over append, i.e., that forall lst1 lst2, rev (lst1 @ lst2) = rev lst2
@ rev lst1, where:

let rec rev = function
| [] -> []
| h :: t -> rev t @ [h]

(That is, of course, an inefficient implementation of rev.) You will need to choose which list to induct over. You will
need the previous exercise as a lemma, as well as the associativity of append, which was proved in the notes above.

Exercise: rev involutive [★★★]
Prove that reverse is an involution, i.e., that forall lst, rev (rev lst) = lst. Proceed by induction on
lst. You will need the previous exercise as a lemma.

Exercise: reflect size [★★★]
Prove that forall t, size (reflect t) = size t by induction on t, where:

let rec size = function
| Leaf -> 0
| Node (l, v, r) -> 1 + size l + size r

let rec reflect = function
| Leaf -> Leaf
| Node (l, v, r) -> Node (reflect r, v, reflect l)

Exercise: fold theorem 2 [★★★★]
We proved that fold_left and fold_right yield the same results if their function argument is associative and
commutative. But that doesn’t explain why these two implementations of concat yield the same results, because ( ^
) is not commutative:

let concat_l lst = List.fold_left ( ^ ) "" lst
let concat_r lst = List.fold_right ( ^ ) lst ""

Formulate and prove a new theorem about when fold_left and fold_right yield the same results, under the
relaxed assumption that their function argument is associative but not necessarily commutative. Hint: make a new as-
sumption about the initial value of the accumulator.

Exercise: propositions [★★★★]
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In propositional logic, we have atomic propositions, negation, conjunction, disjunction, and implication. For example,
raining /\ snowing /\ cold is a proposition stating that it is simultaneously raining and snowing and cold (a
weather condition known as Ithacating).
Define an OCaml type to represent propositions. Then state the induction principle for that type.

Exercise: list spec [★★★]
Design an OCaml interface for lists that has nil, cons, append, and length operations. Design the equational
specification. Hint: the equations will look strikingly like the OCaml implementations of @ and List.length.

Exercise: bag spec [★★★★]
A bag or multiset is like a blend of a list and a set: like a set, order does not matter; like a list, elements may occur more
than once. The number of times an element occurs is its multiplicity. An element that does not occur in the bag has
multiplicity 0. Here is an OCaml signature for bags:

module type Bag = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val insert : 'a -> 'a t -> 'a t
val mult : 'a -> 'a t -> int
val remove : 'a -> 'a t -> 'a t

end

Categorize the operations in the Bag interface as generators, manipulators, or queries. Then design an equational speci-
fication for bags. For the remove operation, your specification should cause at most one occurrence of an element to be
removed. That is, the multiplicity of that value should decrease by at most one.
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CHAPTER

NINE

MUTABILITY

OCaml is not a pure language: it does admit side effects. We have seen that already with I/O, especially printing. But up
till now we have limited ourselves to the subset of the language that is immutable: values could not change.
Mutability is neither good nor bad. It enables new functionality that we couldn’t implement (at least not easily) before, and
it enables us to create certain data structures that are asymptotically more efficient than their purely functional analogues.
But mutability does make code more difficult to reason about, hence it is a source of many faults in code. One reason
for that might be that humans are not good at thinking about change. With immutable values, we’re guaranteed that any
fact we might establish about them can never change. But with mutable values, that’s no longer true. “Change is hard,”
as they say.
In this short chapter we’ll cover the few mutable features of OCaml we’ve omitted so far, and we’ll use them for some
simple data structures. The real win, though, will come in the next chapter, where we put the features to more complicated
uses.

9.1 Refs

A ref is like a pointer or reference in an imperative language. It is a location in memory whose contents may change.
Refs are also called ref cells, the idea being that there’s a cell in memory that can change.
Here’s an example of creating a ref, getting the value from inside it, changing its contents, and observing the changed
contents:

let x = ref 0;;

val x : int ref = {contents = 0}

!x;;

- : int = 0

x := 1;;

- : unit = ()

!x;;

319



OCaml Programming: Correct + Efficient + Beautiful

- : int = 1

The first phrase, let x = ref 0, creates a reference using the ref keyword. That’s a location in memory whose
contents are initialized to 0. Think of the location itself as being an address—for example, 0x3110bae0—even though
there’s no way to write down such an address in an OCaml program. The keyword ref is what causes the memory
location to be allocated and initialized.
The first part of the response from OCaml, val x : int ref, indicates that x is a variable whose type is int ref.
We have a new type constructor here. Much like list and option are type constructors, so is ref. A t ref, for
any type t, is a reference to a memory location that is guaranteed to contain a value of type t. As usual, we should read
a type from right to left: t ref means a reference to a t. The second part of the response shows us the contents of the
memory location. Indeed, the contents have been initialized to 0.
The second phrase, !x, dereferences x and returns the contents of the memory location. Note that ! is the dereference
operator in OCaml, not Boolean negation.
The third phrase, x := 1, is an assignment. It mutates the contents x to be 1. Note that x itself still points to the same
location (i.e., address) in memory. Memory is mutable; variable bindings are not. What changes is the contents. The
response from OCaml is simply (), meaning that the assignment took place—much like printing functions return () to
indicate that the printing did happen.
The fourth phrase, !x again dereferences x to demonstrate that the contents of the memory location did indeed change.

9.1.1 Aliasing

Now that we have refs, we have aliasing: two refs could point to the same memory location, hence updating through one
causes the other to also be updated. For example,

let x = ref 42;;
let y = ref 42;;
let z = x;;
x := 43;;
let w = !y + !z;;

val x : int ref = {contents = 42}

val y : int ref = {contents = 42}

val z : int ref = {contents = 42}

- : unit = ()

val w : int = 85

The result of executing that code is that w is bound to 85, because let z = x causes z and x to become aliases, hence
updating x to be 43 also causes z to be 43.
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9.1.2 Syntax and Semantics

The semantics of refs is based on locations in memory. Locations are values that can be passed to and returned from
functions. But unlike other values (e.g., integers, variants), there is no way to directly write a location in an OCaml
program. That’s different than languages like C, in which programmers can directly write memory addresses and do
arithmetic on pointers. C programmers want that kind of low-level access to do things like interfacing with hardware and
building operating systems. Higher-level programmers are willing to forego it to get memory safety. That’s a hard term
to define, but according to Hicks 2014 it intuitively means that

• pointers are only created in a safe way that defines their legal memory region,
• pointers can only be dereferenced if they point to their allotted memory region,
• that region is (still) defined.

Syntax.
• Ref creation: ref e

• Ref assignment: e1 := e2

• Dereference: !e
Dynamic semantics.

• To evaluate ref e,
– Evaluate e to a value v
– Allocate a new location loc in memory to hold v
– Store v in loc
– Return loc

• To evaluate e1 := e2,
– Evaluate e2 to a value v, and e1 to a location loc.
– Store v in loc.
– Return (), i.e., unit.

• To evaluate !e,
– Evaluate e to a location loc.
– Return the contents of loc.

Static semantics.
We have a new type constructor, ref, such that t ref is a type for any type t. Note that the ref keyword is used in
two ways: as a type constructor, and as an expression that constructs refs.

• ref e : t ref if e : t.
• e1 := e2 : unit if e1 : t ref and e2 : t.
• !e : t if e : t ref.
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9.1.3 Sequencing of Effects

The semicolon operator is used to sequence effects, such as mutating refs. We’ve seen semicolon occur previously with
printing. Now that we’re studying mutability, it’s time to treat it formally.

• Syntax: e1; e2

• Dynamic semantics: To evaluate e1; e2,
– First evaluate e1 to a value v1.
– Then evaluate e2 to a value v2.
– Return v2. (v1 is not used at all.)
– If there are multiple expressions in a sequence, e.g., e1; e2; ...; en, then evaluate each one in order
from left to right, returning only vn.

• Static semantics: e1; e2 : t if e1 : unit and e2 : t. Similarly, e1; e2; ...; en : t if e1
: unit, e2 : unit, … (i.e., all expressions except en have type unit), and en : t.

The typing rule for semicolon is designed to prevent programmer mistakes. For example, a programmer who writes
2+3; 7 probably didn’t mean to: there’s no reason to evaluate 2+3 then throw away the result and instead return 7. The
compiler will give you a warning if you violate this particular typing rule.
To get rid of the warning (if you’re sure that’s what you need to do), there’s a function ignore : 'a -> unit in the
standard library. Using it, ignore(2+3); 7 will compile without a warning. Of course, you could code up ignore
yourself: let ignore _ = ().

9.1.4 Example: Mutable Counter

Here is code that implements a counter. Every time next_val is called, it returns one more than the previous time.

let counter = ref 0

let next_val =
fun () ->

counter := !counter + 1;
!counter

val counter : int ref = {contents = 0}

val next_val : unit -> int = <fun>

next_val ()

- : int = 1

next_val ()

- : int = 2

next_val ()
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- : int = 3

In the implementation of next_val, there are two expressions separated by semicolon. The first expression, counter
:= !counter + 1, is an assignment that increments counter by 1. The second expression, !counter, returns
the newly incremented contents of counter.
The next_val function is unusual in that every time we call it, it returns a different value. That’s quite different than
any of the functions we’ve implemented ourselves so far, which have always been deterministic: for a given input, they
always produced the same output. On the other hand, some functions are nondeterministic: each invocation of the function
might produce a different output despite receiving the same input. In the standard library, for example, functions in the
Randommodule are nondeterministic, as is Stdlib.read_line, which reads input from the user. It’s no coincidence
that those happen to be implemented using mutable features.
We could improve our counter in a couple ways. First, there is a library function incr : int ref -> unit that
increments an int ref by 1. Thus it is like the ++ operator that is familiar from many languages in the C family. Using
it, we could write incr counter instead of counter := !counter + 1. (There’s also a decr function that
decrements by 1.)
Second, the way we coded the counter currently exposes the counter variable to the outside world. Maybe we’d prefer
to hide it so that clients of next_val can’t directly change it. We could do so by nesting counter inside the scope of
next_val:

let next_val =
let counter = ref 0 in
fun () ->

incr counter;
!counter

val next_val : unit -> int = <fun>

Now counter is in scope inside of next_val, but not accessible outside that scope.
When we gave the dynamic semantics of let expressions before, we talked about substitution. One way to think about the
definition of next_val is as follows.

• First, the expression ref 0 is evaluated. That returns a location loc, which is an address in memory. The contents
of that address are initialized to 0.

• Second, everywhere in the body of the let expression that counter occurs, we substitute for it that location. So
we get:

fun () -> incr loc; !loc

• Third, that anonymous function is bound to next_val.
So any time next_val is called, it increments and returns the contents of that one memory location loc.
Now imagine that we instead had written the following (broken) code:

let next_val_broken = fun () ->
let counter = ref 0 in
incr counter;
!counter

val next_val_broken : unit -> int = <fun>
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It’s only a little different: the binding of counter occurs after the fun () -> instead of before. But it makes a huge
difference:

next_val_broken ();;
next_val_broken ();;
next_val_broken ();;

- : int = 1

- : int = 1

- : int = 1

Every time we call next_val_broken, it returns 1: we no longer have a counter. What’s going wrong here?
The problem is that every timenext_val_broken is called, the first thing it does is to evaluateref 0 to a new location
that is initialized to 0. That location is then incremented to 1, and 1 is returned. Every call to next_val_broken is
thus allocating a new ref cell, whereas next_val allocates just one new ref cell.

9.1.5 Example: Pointers

In languages like C, pointers combine two features: they can be null, and they can be changed. (Java has a similar construct
with object references, but that term is confusing in our OCaml context since “reference” currently means a ref cell. So
we’ll stick with the word “pointer”.) Let’s code up pointers using OCaml ref cells.

type 'a pointer = 'a ref option

type 'a pointer = 'a ref option

As usual, read that type right to left. The option part of it encodes the fact that a pointer might be null. We’re using
None to represent that possibility.

let null : 'a pointer = None

val null : 'a pointer = None

The ref part of the type encodes the fact that the contents are mutable. We can create a helper function to allocate and
initialize the contents of a new pointer:

let malloc (x : 'a) : 'a pointer = Some (ref x)

val malloc : 'a -> 'a pointer = <fun>

Now we could create a pointer to any value we like:

let p = malloc 42

val p : int pointer = Some {contents = 42}
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Dereferencing a pointer is the * prefix operator in C. It returns the contents of the pointer, and raises an exception if the
pointer is null:

exception Segfault

let deref (ptr : 'a pointer) : 'a =
match ptr with None -> raise Segfault | Some r -> !r

exception Segfault

val deref : 'a pointer -> 'a = <fun>

deref p

- : int = 42

deref null

Exception: Segfault.
Raised at deref in file "[17]", line 4, characters 25-39
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

We could even introduce our own OCaml operator for dereference. We have to put ~ in front of it to make it parse as a
prefix operator, though.

let ( ~* ) = deref;;
~*p

val ( ~* ) : 'a pointer -> 'a = <fun>

- : int = 42

In C, an assignment through a pointer is written *p = x. That changes the memory to which p points, making it contain
x. We can code up that operator as follows:

let assign (ptr : 'a pointer) (x : 'a) : unit =
match ptr with None -> raise Segfault | Some r -> r := x

val assign : 'a pointer -> 'a -> unit = <fun>

assign p 2;
deref p

- : int = 2
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assign null 0

Exception: Segfault.
Raised at assign in file "[21]", line 2, characters 25-39
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

Again, we could introduce our own OCaml operator for that, though it’s hard to pick a good symbol involving * and =
that won’t be misunderstood as involving multiplication:

let ( =* ) = assign;;
p =* 3;;
~*p

val ( =* ) : 'a pointer -> 'a -> unit = <fun>

- : unit = ()

- : int = 3

The one thing we can’t do is treat a pointer as an integer. C allows that, including taking the address of a variable, which
enables pointer arithmetic. That’s great for efficiency, but also terrible because it leads to all kinds of program errors and
security vulnerabilities.

Evil Secret
Okay that wasn’t actually true what we just said, but this is dangerous knowledge that you really shouldn’t even read.
There is an undocumented function Obj.magic that we could use to get a memory address of a ref:

let address (ptr : 'a pointer) : int =
match ptr with None -> 0 | Some r -> Obj.magic r

let ( ~& ) = address

But you have to promise to never, ever use that function yourself, because it completely circumvents the safety of the
OCaml type system. All bets are off if you do.

None of this pointer encoding is part of the OCaml standard library, because you don’t need it. You can always use refs
and options yourself as you need to. Coding as we just did above is not particularly idiomatic. The reason we did it was
to illustrate the relationship between OCaml refs and C pointers (equivalently, Java references).
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9.1.6 Example: Recursion Without Rec

Here’s a neat trick that’s possible with refs: we can build recursive functions without ever using the keyword rec. Suppose
we want to define a recursive function such as fact, which we would normally write as follows:

let rec fact_rec n = if n = 0 then 1 else n * fact_rec (n - 1)

val fact_rec : int -> int = <fun>

We want to define that function without using rec. We can begin by defining a ref to an obviously incorrect version of
the function:

let fact0 = ref (fun x -> x + 0)

val fact0 : (int -> int) ref = {contents = <fun>}

The way in which fact0 is incorrect is actually irrelevant. We just need it to have the right type. We could just as well
have used fun x -> x instead of fun x -> x + 0.
At this point, fact0 clearly doesn’t compute the factorial function. For example, 5! ought to be 120, but that’s not what
fact0 computes:

!fact0 5

- : int = 5

Next, we write fact as usual, but without rec. At the place where we need to make the recursive call, we instead invoke
the function stored inside fact0:

let fact n = if n = 0 then 1 else n * !fact0 (n - 1)

val fact : int -> int = <fun>

Now fact does actually get the right answer for 0, but not for 5:

fact 0;;
fact 5;;

- : int = 1

- : int = 20

The reason it’s not right for 5 is that the recursive call isn’t actually to the right function. We want the recursive call to go
to fact, not to fact0. So here’s the trick: we mutate fact0 to point to fact:

fact0 := fact

- : unit = ()

Now when fact makes its recursive call and dereferences fact0, it gets back itself! That makes the computation
correct:
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fact 5

- : int = 120

Abstracting a little, here’s what we did. We started with a function that is recursive:

let rec f x = ... f y ...

We rewrote it as follows:

let f0 = ref (fun x -> x)

let f x = ... !f0 y ...

f0 := f

Now f will compute the same result as it did in the version where we defined it with rec.
What’s happening here is sometimes called “tying the recursive knot”: we update the reference to f0 to point to f, such
that when f dereferences f0, it gets itself back. The initial function to which we made f0 point (in this case the identity
function) doesn’t really matter; it’s just there as a placeholder until we tie the knot.

9.1.7 Weak Type Variables

Perhaps you have already tried using the identity function to define fact0, as we mentioned above. If so, you will have
encountered this rather puzzling output:

let fact0 = ref (fun x -> x)

val fact0 : ('_weak1 -> '_weak1) ref = {contents = <fun>}

What is this strange type for the identity function, '_weak1 -> '_weak1? Why isn’t it the usual 'a -> 'a?
The answer has to do with a particularly tricky interaction between polymorphism and mutability. In a later chapter on
interpreters, we’ll learn how type inference works, and at that point we’ll be able to explain the problem in detail. In short,
allowing the type 'a -> 'a for that ref would lead to the possibility of programs that crash at run time because of type
errors.
For now, think about it this way: although the value stored in a ref cell is permitted to change, the type of that value is
not. And if OCaml gave ref (fun x -> x) the type ('a -> 'a) ref, then that cell could first store fun x
-> x + 1 : int -> int but later store fun x -> s ^ "!" : string -> string. That would be the
kind of change in type that is not allowed.
So OCaml uses weak type variables to stand for unknown but not polymorphic types. These variables always start with
_weak. Essentially, type inference for these is just not finished yet. Once you give OCaml enough information, it will
finish type inference and replace the weak type variable with the actual type:

!fact0

- : '_weak1 -> '_weak1 = <fun>
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!fact0 1

- : int = 1

!fact0

- : int -> int = <fun>

After the application of !fact0 to 1, OCaml now knows that the function is meant to have type int -> int. So
from then on, that’s the only type at which it can be used. It can’t, for example, be applied to a string.

!fact0 "camel"

File "[36]", line 1, characters 7-14:
1 | !fact0 "camel"

^^^^^^^
Error: This expression has type string but an expression was expected of type

int

If you would like to learn more about weak type variables right now, take a look at Section 2 of Relaxing the value
restriction by Jacques Garrigue, or this section of the OCaml manual.

9.1.8 Physical Equality

OCaml has two equality operators, physical equality and structural equality. The documentation of Stdlib.(==)
explains physical equality:

e1 == e2 tests for physical equality of e1 and e2. On mutable types such as references, arrays, byte
sequences, records with mutable fields and objects with mutable instance variables, e1 == e2 is true if
and only if physical modification of e1 also affects e2. On non-mutable types, the behavior of ( == ) is
implementation-dependent; however, it is guaranteed that e1 == e2 implies compare e1 e2 = 0.

One interpretation could be that == should be used only when comparing refs (and other mutable data types) to see
whether they point to the same location in memory. Otherwise, don’t use ==.
Structural equality is also explained in the documentation of Stdlib.(=):

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and arrays) are
equal if and only if their current contents are structurally equal, even if the two mutable objects are not the
same physical object. Equality between functional values raises Invalid_argument. Equality between
cyclic data structures may not terminate.

Structural equality is usually what you want to test. For refs, it checks whether the contents of the memory location are
equal, regardless of whether they are the same location.
The negation of physical equality is !=, and the negation of structural equality is <>. This can be hard to remember.
Here are some examples involving equality and refs to illustrate the difference between structural equality (=) and physical
equality (==):

let r1 = ref 42
let r2 = ref 42
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val r1 : int ref = {contents = 42}

val r2 : int ref = {contents = 42}

A ref is physically equal to itself, but not to another ref that is a different location in memory:

r1 == r1

- : bool = true

r1 == r2

- : bool = false

r1 != r2

- : bool = true

Two refs that are at different locations in memory but store structurally equal values are themselves structurally equal:

r1 = r1

- : bool = true

r1 = r2

- : bool = true

r1 <> r2

- : bool = false

Two refs that store structurally unequal values are themselves structurally unequal:

ref 42 <> ref 43

- : bool = true
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9.1.9 Example: Singly-linked Lists

OCaml’s built-in singly-linked lists are functional, not imperative. But we can code up imperative singly-linked lists, of
course, with refs. (We could also use the pointers we invented above, but that only makes the code more complicated.)
We start by defining a type 'a node for nodes of a list that contains values of type 'a. The next field of a node is
itself another list.

(** An ['a node] is a node of a mutable singly-linked list. It contains a value
of type ['a] and a link to the [next] node. *)

type 'a node = { next : 'a mlist; value : 'a }

(** An ['a mlist] is a mutable singly-linked list with elements of type ['a].
The [option] represents the possibility that the list is empty.
RI: The list does not contain any cycles. *)

and 'a mlist = 'a node option ref

type 'a node = { next : 'a mlist; value : 'a; }
and 'a mlist = 'a node option ref

To create an empty list, we simply return a ref to None:

(** [empty ()] is an empty singly-linked list. *)
let empty () : 'a mlist = ref None

val empty : unit -> 'a mlist = <fun>

Note the type of empty: instead of being a value, it is now a function. This is typical of functions that create mutable
data structures. At the end of this section, we’ll return to why empty has to be a function.
Inserting a new first element just requires creating a new node, linking from it to the original list, and mutating the list:

(** [insert_first lst v] mutates mlist [lst] by inserting value [v] as the
first value in the list. *)

let insert_first (lst : 'a mlist) (v : 'a) : unit =
lst := Some { next = ref !lst; value = v }

val insert_first : 'a mlist -> 'a -> unit = <fun>

Again, note the type of insert_first. Rather than returning an 'a mlist, it returns unit. This again is typical
of functions that modify mutable data structures.
In both empty and insert_first, the use of unitmakes the functions more like their equivalents in an imperative
language. The constructor for an empty list in Java, for example, might not take any arguments (which is equivalent to
taking unit). And the insert_first operation for a Java linked list might return void, which is equivalent to
returning unit.
Finally, here’s a conversion function from our new mutable lists to OCaml’s built-in lists:

(** [to_list lst] is an OCaml list containing the same values as [lst]
in the same order. Not tail recursive. *)

let rec to_list (lst : 'a mlist) : 'a list =
match !lst with None -> [] | Some { next; value } -> value :: to_list next
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val to_list : 'a mlist -> 'a list = <fun>

Now we can see mutability in action:

let lst0 = empty ();;
let lst1 = lst0;;
insert_first lst0 1;;
to_list lst1;;

val lst0 : '_weak2 mlist = {contents = None}

val lst1 : '_weak2 mlist = {contents = None}

- : unit = ()

- : int list = [1]

The change to lst0 mutates lst1, because they are aliases.
The type of empty. Returning to empty, why must it be a function? It might seem as though we could define it more
simply as follows:

let empty = ref None

val empty : '_weak3 option ref = {contents = None}

But now there is only ever one ref that gets created, hence there is only one list ever in existence:

let lst2 = empty;;
let lst3 = empty;;
insert_first lst2 2;;
insert_first lst3 3;;
to_list lst2;;
to_list lst3;;

val lst2 : '_weak3 option ref = {contents = None}

val lst3 : '_weak3 option ref = {contents = None}

- : unit = ()

- : unit = ()

- : int list = [3; 2]

- : int list = [3; 2]

Note how the mutations affect both lists, because they are both aliases for the same ref.
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By correctly making empty a function, we guarantee that a new ref is returned every time an empty list is created.

let empty () = ref None

val empty : unit -> 'a option ref = <fun>

It really doesn’t matter what argument that function takes, since it will never use it. We could define it as any of these in
principle:

let empty _ = ref None
let empty (b : bool) = ref None
let empty (n : int) = ref None
(* etc. *)

val empty : 'a -> 'b option ref = <fun>

val empty : bool -> 'a option ref = <fun>

val empty : int -> 'a option ref = <fun>

But the reason we prefer unit as the argument type is to indicate to the client that the argument value is not going to be
used. After all, there’s nothing interesting that the function can do with the unit value. Another way to think about that
would be that a function whose input type is unit is like a function or method in an imperative language that takes in no
arguments. For example, in Java a linked list class could have a constructor that takes no arguments and creates an empty
list:

class LinkedList {
/** Returns an empty list. */
LinkedList() { ... }

}

Mutable values. In mlist, the nodes of the list are mutable, but the values are not. If we wanted the values also to be
mutable, we can make them refs too:

type 'a node = { next : 'a mlist; value : 'a ref }
and 'a mlist = 'a node option ref

let empty () : 'a mlist = ref None

let insert_first (lst : 'a mlist) (v : 'a) : unit =
lst := Some { next = ref !lst; value = ref v }

let rec set (lst : 'a mlist) (n : int) (v : 'a) : unit =
match (!lst, n) with
| None, _ -> invalid_arg "out of bounds"
| Some { value }, 0 -> value := v
| Some { next }, _ -> set next (n - 1) v

let rec to_list (lst : 'a mlist) : 'a list =
match !lst with None -> [] | Some { next; value } -> !value :: to_list next

Now rather than having to create new nodes if we want to change a value, we can directly mutate the value in a node:
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let lst = empty ();;
insert_first lst 42;;
insert_first lst 41;;
to_list lst;;
set lst 1 43;;
to_list lst;;

val lst : '_weak4 mlist = {contents = None}

- : unit = ()

- : unit = ()

- : int list = [41; 42]

- : unit = ()

- : int list = [41; 43]

9.2 Mutable Fields

The fields of a record can be declared as mutable, meaning their contents can be updated without constructing a new
record. For example, here is a record type for two-dimensional colored points whose color field c is mutable:

type point = {x : int; y : int; mutable c : string}

type point = { x : int; y : int; mutable c : string; }

Note that mutable is a property of the field, rather than the type of the field. In particular, we write mutable field
: type, not field : mutable type.
The operator to update a mutable field is <- which is meant to look like a left arrow.

let p = {x = 0; y = 0; c = "red"}

val p : point = {x = 0; y = 0; c = "red"}

p.c <- "white"

- : unit = ()

p

- : point = {x = 0; y = 0; c = "white"}
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Non-mutable fields cannot be updated that way:

p.x <- 3;;

File "[5]", line 1, characters 0-8:
1 | p.x <- 3;;

^^^^^^^^
Error: The record field x is not mutable

• Syntax: e1.f <- e2

• Dynamic semantics: To evaluate e1.f <- e2, evaluate e2 to a value v2, and e1 to a value v1, which must
have a field named f. Update v1.f to v2. Return ().

• Static semantics: e1.f <- e2 : unit if e1 : t1 and t1 = {...; mutable f : t2; ...},
and e2 : t2.

9.2.1 Refs Are Mutable Fields

It turns out that refs are actually implemented as mutable fields. In Stdlib we find the following declaration:

type 'a ref = { mutable contents : 'a }

And that’s why when the toplevel outputs a ref it looks like a record: it is a record with a single mutable field named
contents!

let r = ref 42

val r : int ref = {contents = 42}

The other syntax we’ve seen for refs is in fact equivalent to simple OCaml functions:

let ref x = {contents = x}

val ref : 'a -> 'a ref = <fun>

let ( ! ) r = r.contents

val ( ! ) : 'a ref -> 'a = <fun>

let ( := ) r x = r.contents <- x

val ( := ) : 'a ref -> 'a -> unit = <fun>

The reason we say “equivalent” is that those functions are actually implemented not in OCaml itself but in the OCaml
run-time, which is implemented mostly in C. Nonetheless the functions do behave the same as the OCaml source given
above.
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9.2.2 Example: Mutable Singly-Linked Lists

Using mutable fields, we can implement singly-linked lists almost the same as we did with references. The types for nodes
and lists are simplified:

(** An ['a node] is a node of a mutable singly-linked list. It contains a value
of type ['a] and optionally has a pointer to the next node. *)

type 'a node = {
mutable next : 'a node option;
value : 'a

}

(** An ['a mlist] is a mutable singly-linked list with elements of type ['a].
RI: The list does not contain any cycles. *)

type 'a mlist = {
mutable first : 'a node option;

}

type 'a node = { mutable next : 'a node option; value : 'a; }

type 'a mlist = { mutable first : 'a node option; }

And there is no essential difference in the algorithms for implementing the operations, but the code is slightly simplified
because we don’t have to use reference operations:

(** [insert_first lst n] mutates mlist [lst] by inserting value [v] as the
first value in the list. *)

let insert_first (lst : 'a mlist) (v : 'a) =
lst.first <- Some {value = v; next = lst.first}

(** [empty ()] is an empty singly-linked list. *)
let empty () : 'a mlist = {
first = None

}

(** [to_list lst] is an OCaml list containing the same values as [lst]
in the same order. Not tail recursive. *)

let to_list (lst : 'a mlist) : 'a list =
let rec helper = function

| None -> []
| Some {next; value} -> value :: helper next

in
helper lst.first

val insert_first : 'a mlist -> 'a -> unit = <fun>

val empty : unit -> 'a mlist = <fun>

val to_list : 'a mlist -> 'a list = <fun>
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9.2.3 Example: Mutable Stacks

We already know that lists and stacks can be implemented in quite similar ways. Let’s use what we’ve learned from
mutable linked lists to implement mutable stacks. Here is an interface:

module type MutableStack = sig
(** ['a t] is the type of mutable stacks whose elements have type ['a].

The stack is mutable not in the sense that its elements can
be changed, but in the sense that it is not persistent:
the operations [push] and [pop] destructively modify the stack. *)

type 'a t

(** Raised if [peek] or [pop] encounter the empty stack. *)
exception Empty

(** [empty ()] is the empty stack. *)
val empty : unit -> 'a t

(** [push x s] modifies [s] to make [x] its top element.
The rest of the elements are unchanged. *)

val push : 'a -> 'a t -> unit

(** [peek s] is the top element of [s].
Raises: [Empty] if [s] is empty. *)

val peek : 'a t -> 'a

(** [pop s] removes the top element of [s].
Raises: [Empty] if [s] is empty. *)

val pop : 'a t -> unit
end

module type MutableStack =
sig

type 'a t
exception Empty
val empty : unit -> 'a t
val push : 'a -> 'a t -> unit
val peek : 'a t -> 'a
val pop : 'a t -> unit

end

Now let’s implement the mutable stack with a mutable linked list.

module MutableRecordStack : MutableStack = struct
(** An ['a node] is a node of a mutable linked list. It has

a field [value] that contains the node's value, and
a mutable field [next] that is [None] if the node has
no successor, or [Some n] if the successor is [n]. *)

type 'a node = {value : 'a; mutable next : 'a node option}

(** AF: An ['a t] is a stack represented by a mutable linked list.
The mutable field [top] is the first node of the list,
which is the top of the stack. The empty stack is represented
by {top = None}. The node {top = Some n} represents the
stack whose top is [n], and whose remaining elements are
the successors of [n]. *)

(continues on next page)
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(continued from previous page)

type 'a t = {mutable top : 'a node option}

exception Empty

let empty () = {top = None}

let push x s = s.top <- Some {value = x; next = s.top}

let peek s =
match s.top with
| None -> raise Empty
| Some {value} -> value

let pop s =
match s.top with
| None -> raise Empty
| Some {next} -> s.top <- next

end

module MutableRecordStack : MutableStack

9.3 Arrays and Loops

Arrays are fixed-length mutable sequences with constant-time access and update. So they are similar in various ways to
refs, lists, and tuples. Like refs, they are mutable. Like lists, they are (finite) sequences. Like tuples, their length is fixed
in advance and cannot be resized.
The syntax for arrays is similar to lists:

let v = [|0.; 1.|]

val v : float array = [|0.; 1.|]

That code creates an array whose length is fixed to be 2 and whose contents are initialized to 0. and 1.. The keyword
array is a type constructor, much like list.
Later those contents can be changed using the <- operator:

v.(0) <- 5.

- : unit = ()

v

- : float array = [|5.; 1.|]

As you can see in that example, indexing into an array uses the syntax array.(index), where the parentheses are
mandatory.
The Array module has many useful functions on arrays.
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Syntax.
• Array creation: [|e0; e1; ...; en|]

• Array indexing: e1.(e2)
• Array assignment: e1.(e2) <- e3

Dynamic semantics.
• To evaluate [|e0; e1; ...; en|], evaluate each ei to a value vi, create a new array of length n+1, and
store each value in the array at its index.

• To evaluate e1.(e2), evaluate e1 to an array value v1, and e2 to an integer v2. If v2 is not within the bounds
of the array (i.e., 0 to n-1, where n is the length of the array), raise Invalid_argument. Otherwise, index
into v1 to get the value v at index v2, and return v.

• To evaluate e1.(e2) <- e3, evaluate each expression ei to a value vi. Check that v2 is within bounds, as in
the semantics of indexing. Mutate the element of v1 at index v2 to be v3.

Static semantics.
• [|e0; e1; ...; en|] : t array if ei : t for all the ei.
• e1.(e2) : t if e1 : t array and e2 : int.
• e1.(e2) <- e3 : unit if e1 : t array and e2 : int and e3 : t.

Loops.
OCaml has while loops and for loops. Their syntax is as follows:

while e1 do e2 done
for x=e1 to e2 do e3 done
for x=e1 downto e2 do e3 done

Each of these three expressions evaluates the expression betweendo anddone for each iteration of the loop; while loops
terminate when e1 becomes false; for loops execute once for each integer from e1 to e2; for..to loops evaluate
starting at e1 and incrementing x each iteration; for..downto loops evaluate starting at e1 and decrementing x each
iteration. All three expressions evaluate to () after the termination of the loop. Because they always evaluate to (), they
are less general than folds, maps, or recursive functions.
Loops are themselves not inherently mutable, but they are most often used in conjunction with mutable features like
arrays—typically, the body of the loop causes side effects. We can also use functions like Array.iter, Array.map,
and Array.fold_left instead of loops.

9.4 Summary

Mutable data types make programs harder to reason about. For example, before refs, we didn’t have to worry about
aliasing in OCaml. But mutability does have its uses. I/O is fundamentally about mutation. And some data structures
(like arrays and hash tables) cannot be implemented as efficiently without mutability.
Mutability thus offers great power, but with great power comes great responsibility. Try not to abuse your new-found
power!
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9.4.1 Terms and Concepts

• address
• alias
• array
• assignment
• dereference
• deterministic
• immutable
• index
• loop
• memory safety
• mutable
• mutable field
• nondeterministic
• physical equality
• pointer
• pure
• ref
• ref cell
• reference
• sequencing
• structural equality

9.4.2 Further Reading

• Introduction to Objective Caml, chapters 7 and 8.
• OCaml from the Very Beginning, chapter 13.
• Real World OCaml, chapters 8.

9.5 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: mutable fields [★]
Define an OCaml record type to represent student names and GPAs. It should be possible to mutate the value of a student’s
GPA. Write an expression defining a student with name "Alice" and GPA 3.7. Then write an expression to mutate
Alice’s GPA to 4.0.
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Exercise: refs [★]
Give OCaml expressions that have the following types. Use utop to check your answers.

• bool ref

• int list ref

• int ref list

Exercise: inc fun [★]
Define a reference to a function as follows:

let inc = ref (fun x -> x + 1)

Write code that uses inc to produce the value 3110.

Exercise: addition assignment [★★]
The C language and many languages derived from it, such as Java, has an addition assignment operator written a += b
and meaning a = a + b. Implement such an operator in OCaml; its type should be int ref -> int -> unit.
Here’s some code to get you started:

let ( +:= ) x y = ...

And here’s an example usage:

# let x = ref 0;;
# x +:= 3110;;
# !x;;
- : int = 3110

Exercise: physical equality [★★]
Define x, y, and z as follows:

let x = ref 0
let y = x
let z = ref 0

Predict the value of the following series of expressions:

# x == y;;
# x == z;;
# x = y;;
# x = z;;
# x := 1;;
# x = y;;
# x = z;;

9.5. Exercises 341



OCaml Programming: Correct + Efficient + Beautiful

Check your answers in utop.

Exercise: norm [★★]
The Euclidean norm of an 𝑛-dimensional vector 𝑥 = (𝑥1, … , 𝑥𝑛) is written |𝑥| and is defined to be

√𝑥2
1 + ⋯ + 𝑥2𝑛.

Write a function norm : vector -> float that computes the Euclidean norm of a vector, where vector is
defined as follows:

(* AF: the float array [| x1; ...; xn |] represents the
* vector (x1, ..., xn)
* RI: the array is non-empty *)

type vector = float array

Your function should not mutate the input array. Hint: although your first instinct might be to reach for a loop, instead try
to use Array.map and Array.fold_left or Array.fold_right.

Exercise: normalize [★★]
Every vector 𝑥 can be normalized by dividing each component by |𝑥|; this yields a vector with norm 1:

( 𝑥1
|𝑥| , … , 𝑥𝑛

|𝑥|) .

Write a function normalize : vector -> unit that normalizes a vector “in place” by mutating the input array.
Here’s a sample usage:

# let a = [|1.; 1.|];;
val a : float array = [|1.; 1.|]

# normalize a;;
- : unit = ()

# a;;
- : float array = [|0.7071...; 0.7071...|]

Hint: Array.iteri.

Exercise: norm loop [★★]
Modify your implementation of norm to use a loop. Here is pseudocode for what you should do:

initialize norm to 0.0
loop through array

add to norm the square of the current array component
return sqrt of norm

Exercise: normalize loop [★★]
Modify your implementation of normalize to use a loop.
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Exercise: init matrix [★★★]
The Array module contains two functions for creating an array: make and init. make creates an array and fills it
with a default value, while init creates an array and uses a provided function to fill it in. The library also contains a
function make_matrix for creating a two-dimensional array, but it does not contain an analogous init_matrix to
create a matrix using a function for initialization.
Write a function init_matrix : int -> int -> (int -> int -> 'a) -> 'a array array such
that init_matrix n o f creates and returns an n by o matrix m with m.(i).(j) = f i j for all i and j in
bounds.
See the documentation for make_matrix for more information on the representation of matrices as arrays.
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CHAPTER

TEN

DATA STRUCTURES

Efficient data structures are important building blocks for large programs. In this chapter, we’ll discuss what it means
to be efficient, how to implement some efficient data structures using both imperative and functional programming, and
learn about the technique of amortized analysis.
Of course, we’ve already covered quite a few simple data structures, especially in the modules chapter, where we used
lists to implement stacks, queues, maps, and sets. For stacks and (batched) queues, those implementations were already
efficient. But we can do much better for maps (and sets). In this chapter we’ll see efficient implementations of maps using
hash tables and red-black trees.
We’ll also take a look at some cool functional data structures that appear less often in imperative languages: sequences,
which are infinite lists implemented with functions called thunks; lazy lists, which are implemented with a language feature
(aptly called “laziness”) that suspends evaluation; persistent arrays, which offer performance that can often be constant
time while being persistent; promises, which are a way of organizing concurrent computations that has recently become
popular in imperative web programming; and monads, which are a way of organizing any kind of computation that has
(side) effects.

10.1 Hash Tables

The hash table is a widely used data structure whose performance relies upon mutability. The implementation of a hash
table is quite involved compared to other data structures we’ve implemented so far. We’ll build it up slowly, so that the
need for and use of each piece can be appreciated.

10.1.1 Maps

Hash tables implement the map data abstraction. A map binds keys to values. This abstraction is so useful that it goes
by many other names, among them associative array, dictionary, and symbol table. We’ll write maps abstractly (i.e,
mathematically; not actually OCaml syntax) as { 𝑘1 ∶ 𝑣1, 𝑘2 ∶ 𝑣2, … , 𝑘𝑛 ∶ 𝑣𝑛 }. Each 𝑘 ∶ 𝑣 is a binding of key 𝑘 to value
𝑣. Here are a couple of examples:

• A map binding a course number to something about it: {3110 : “Fun”, 2110 : “OO”}.
• A map binding a university name to the year it was chartered: {“Harvard” : 1636, “Princeton” : 1746, “Penn”:
1740, “Cornell” : 1865}.

The order in which the bindings are abstractly written does not matter, so the first example might also be written {2110 :
“OO”, 3110 : “Fun”}. That’s why we use set braces—they suggest that the bindings are a set, with no ordering implied.

Note: As that notation suggests, maps and sets are very similar. Data structures that can implement a set can also
implement a map, and vice-versa:
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• Given a map data structure, we can treat the keys as elements of a set, and simply ignore the values which the keys
are bound to. This admittedly wastes a little space, because we never need the values.

• Given a set data structure, we can store key–value pairs as the elements. Searching for elements (hence insertion
and removal) might become more expensive, because the set abstraction is unlikely to support searching for keys
by themselves.

Here is an interface for maps:

module type Map = sig

(** [('k, 'v) t] is the type of maps that bind keys of type
['k] to values of type ['v]. *)

type ('k, 'v) t

(** [insert k v m] is the same map as [m], but with an additional
binding from [k] to [v]. If [k] was already bound in [m],
that binding is replaced by the binding to [v] in the new map. *)

val insert : 'k -> 'v -> ('k, 'v) t -> ('k, 'v) t

(** [find k m] is [Some v] if [k] is bound to [v] in [m],
and [None] if not. *)

val find : 'k -> ('k, 'v) t -> 'v option

(** [remove k m] is the same map as [m], but without any binding of [k].
If [k] was not bound in [m], then the map is unchanged. *)

val remove : 'k -> ('k, 'v) t -> ('k, 'v) t

(** [empty] is the empty map. *)
val empty : ('k, 'v) t

(** [of_list lst] is a map containing the same bindings as
association list [lst].
Requires: [lst] does not contain any duplicate keys. *)

val of_list : ('k * 'v) list -> ('k, 'v) t

(** [bindings m] is an association list containing the same
bindings as [m]. There are no duplicates in the list. *)

val bindings : ('k, 'v) t -> ('k * 'v) list
end

Next, we’re going to examine three implementations of maps based on
• association lists,
• arrays, and
• a combination of the above known as a hash table with chaining.

Each implementation will need a slightly different interface, because of constraints resulting from the underlying repre-
sentation type. In each case we’ll pay close attention to the AF, RI, and efficiency of the operations.
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10.1.2 Maps as Association Lists

The simplest implementation of a map in OCaml is as an association list. We’ve seen that representation twice so far [1]
[2]. Here is an implementation of Map using it:

module ListMap : Map = struct
(** AF: [[(k1, v1); (k2, v2); ...; (kn, vn)]] is the map {k1 : v1, k2 : v2,

..., kn : vn}. If a key appears more than once in the list, then in the
map it is bound to the left-most occurrence in the list. For example,
[[(k, v1); (k, v2)]] represents {k : v1}. The empty list represents
the empty map.
RI: none. *)

type ('k, 'v) t = ('k * 'v) list

(** Efficiency: O(1). *)
let insert k v m = (k, v) :: m

(** Efficiency: O(n). *)
let find = List.assoc_opt

(** Efficiency: O(n). *)
let remove k lst = List.filter (fun (k', _) -> k <> k') lst

(** Efficiency: O(1). *)
let empty = []

(** Efficiency: O(1). *)
let of_list lst = lst

(** [keys m] is a list of the keys in [m], without
any duplicates.
Efficiency: O(n log n). *)

let keys m = m |> List.map fst |> List.sort_uniq Stdlib.compare

(** [binding m k] is [(k, v)], where [v] is the value that [k]
binds in [m].
Requires: [k] is a key in [m].
Efficiency: O(n). *)

let binding m k = (k, List.assoc k m)

(** Efficiency: O(n log n) + O(n) * O(n), which is O(n^2). *)
let bindings m = List.map (binding m) (keys m)

end

10.1.3 Maps as Arrays

Mutable maps are maps whose bindings may be mutated. The interface for a mutable map therefore differs from an
immutable map. Insertion and removal operations for a mutable map therefore return unit, because they do not produce
a new map but instead mutate an existing map.
An array can be used to represent a mutable map whose keys are integers. A binding from a key to a value is stored by
using the key as an index into the array, and storing the binding at that index. For example, we could use an array to map
office numbers to their occupants:
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Office Occupant
459 Fan
460 Gries
461 Clarkson
462 Muhlberger
463 does not exist

This kind of map is called a direct address table. Since arrays have a fixed size, the implementer now needs to know the
client’s desire for the capacity of the table (i.e., the number of bindings that can be stored in it) whenever an empty table
is created. That leads to the following interface:

module type DirectAddressMap = sig
(** [t] is the type of maps that bind keys of type int to values of

type ['v]. *)
type 'v t

(** [insert k v m] mutates map [m] to bind [k] to [v]. If [k] was
already bound in [m], that binding is replaced by the binding to
[v] in the new map. Requires: [k] is in bounds for [m]. *)

val insert : int -> 'v -> 'v t -> unit

(** [find k m] is [Some v] if [k] is bound to [v] in [m], and [None]
if not. Requires: [k] is in bounds for [m]. *)

val find : int -> 'v t -> 'v option

(** [remove k m] mutates [m] to remove any binding of [k]. If [k] was
not bound in [m], then the map is unchanged. Requires: [k] is in
bounds for [m]. *)

val remove : int -> 'v t -> unit

(** [create c] creates a map with capacity [c]. Keys [0] through [c-1]
are _in bounds_ for the map. *)

val create : int -> 'v t

(** [of_list c lst] is a map containing the same bindings as
association list [lst] and with capacity [c]. Requires: [lst] does
not contain any duplicate keys, and every key in [lst] is in
bounds for capacity [c]. *)

val of_list : int -> (int * 'v) list -> 'v t

(** [bindings m] is an association list containing the same bindings
as [m]. There are no duplicate keys in the list. *)

val bindings : 'v t -> (int * 'v) list
end

Here is an implementation of that interface:

module ArrayMap : DirectAddressMap = struct
(** AF: [[|Some v0; Some v1; ... |]] represents {0 : v0, 1 : v1, ...}.

If element [i] of the array is instead [None], then [i] is not
bound in the map.
RI: None. *)

type 'v t = 'v option array

(** Efficiency: O(1). *)

(continues on next page)
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(continued from previous page)

let insert k v a = a.(k) <- Some v

(** Efficiency: O(1). *)
let find k a = a.(k)

(** Efficiency: O(1). *)
let remove k a = a.(k) <- None

(** Efficiency: O(c). *)
let create c = Array.make c None

(** Efficiency: O(c). *)
let of_list c lst =

(* O(c) *)
let a = create c in
(* O(c) * O(1) = O(c) *)
List.iter (fun (k, v) -> insert k v a) lst;
a

(** Efficiency: O(c). *)
let bindings a =

let bs = ref [] in
(* O(1) *)
let add_binding k v =
match v with None -> () | Some v -> bs := (k, v) :: !bs

in
(* O(c) *)
Array.iteri add_binding a;
!bs

end

Its efficiency is great! The insert, find, and remove operations are constant time. But that comes at the expense of
forcing keys to be integers. Moreover, they need to be small integers (or at least integers from a small range), otherwise
the arrays we use will need to be huge.

10.1.4 Maps as Hash Tables

Arrays offer constant time performance, but come with severe restrictions on keys. Association lists don’t place those
restrictions on keys, but they also don’t offer constant time performance. Is there a way to get the best of both worlds?
Yes (more or less)! Hash tables are the solution.
The key idea is that we assume the existence of a hash function hash : 'a -> int that can convert any key to
a non-negative integer. Then we can use that function to index into an array, as we did with direct address tables. Of
course, we want the hash function itself to run in constant time, otherwise the operations that use it would not be efficient.
That leads to the following interface, in which the client of the hash table has to pass in a hash function when a table is
created:

module type TableMap = sig
(** [('k, 'v) t] is the type of mutable table-based maps that bind

keys of type ['k] to values of type ['v]. *)
type ('k, 'v) t

(** [insert k v m] mutates map [m] to bind [k] to [v]. If [k] was
already bound in [m], that binding is replaced by the binding to

(continues on next page)
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[v]. *)
val insert : 'k -> 'v -> ('k, 'v) t -> unit

(** [find k m] is [Some v] if [m] binds [k] to [v], and [None] if [m]
does not bind [k]. *)

val find : 'k -> ('k, 'v) t -> 'v option

(** [remove k m] mutates [m] to remove any binding of [k]. If [k] was
not bound in [m], the map is unchanged. *)

val remove : 'k -> ('k, 'v) t -> unit

(** [create hash c] creates a new table map with capacity [c] that
will use [hash] as the function to convert keys to integers.
Requires: The output of [hash] is always non-negative, and [hash]
runs in constant time. *)

val create : ('k -> int) -> int -> ('k, 'v) t

(** [bindings m] is an association list containing the same bindings
as [m]. *)

val bindings : ('k, 'v) t -> ('k * 'v) list

(** [of_list hash lst] creates a map with the same bindings as [lst],
using [hash] as the hash function. Requires: [lst] does not
contain any duplicate keys. *)

val of_list : ('k -> int) -> ('k * 'v) list -> ('k, 'v) t
end

module type TableMap =
sig

type ('k, 'v) t
val insert : 'k -> 'v -> ('k, 'v) t -> unit
val find : 'k -> ('k, 'v) t -> 'v option
val remove : 'k -> ('k, 'v) t -> unit
val create : ('k -> int) -> int -> ('k, 'v) t
val bindings : ('k, 'v) t -> ('k * 'v) list
val of_list : ('k -> int) -> ('k * 'v) list -> ('k, 'v) t

end

One immediate problem with this idea is what to do if the output of the hash is not within the bounds of the array. It’s
easy to solve this: if a is the length of the array then computing (hash k) mod a will return an index that is within
bounds.
Another problem is what to do if the hash function is not injective, meaning that it is not one-to-one. Then multiple keys
could collide and need to be stored at the same index in the array. That’s okay! We deliberately allow that. But it does
mean we need a strategy for what to do when keys collide.
There are two well-known strategies for dealing with collisions. One is to store multiple bindings at each array index. The
array elements are called buckets. Typically, the bucket is implemented as a linked list. This strategy is known by many
names, including chaining, closed addressing, and open hashing. We’ll use chaining as the name. To check whether an
element is in the hash table, the key is first hashed to find the correct bucket to look in. Then, the linked list is scanned to
see if the desired element is present. If the linked list is short, this scan is very quick. An element is added or removed
by hashing it to find the correct bucket. Then, the bucket is checked to see if the element is there, and finally the element
is added or removed appropriately from the bucket in the usual way for linked lists.
The other strategy is to store bindings at places other than their proper location according to the hash. When adding a
new binding to the hash table would create a collision, the insert operation instead finds an empty location in the array to
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put the binding. This strategy is (confusingly) known as probing, open addressing, and closed hashing. We’ll use probing
as the name. A simple way to find an empty location is to search ahead through the array indices with a fixed stride
(often 1), looking for an unused entry; this linear probing strategy tends to produce a lot of clustering of elements in the
table, leading to bad performance. A better strategy is to use a second hash function to compute the probing interval; this
strategy is called double hashing. Regardless of how probing is implemented, however, the time required to search for or
add an element grows rapidly as the hash table fills up.
Chaining has often been preferred over probing in software implementations, because it’s easy to implement the linked
lists in software. Hardware implementations have often used probing, when the size of the table is fixed by circuitry. But
some modern software implementations are re-examining the performance benefits of probing.

Chaining Representation

Here is a representation type for a hash table that uses chaining:

type ('k, 'v) t = {
hash : 'k -> int;
mutable size : int;
mutable buckets : ('k * 'v) list array

}

The buckets array has elements that are association lists, which store the bindings. The hash function is used to
determine which bucket a key goes into. The size is used to keep track of the number of bindings currently in the table,
since that would be expensive to compute by iterating over buckets.
Here are the AF and RI:

(** AF: If [buckets] is
[| [(k11,v11); (k12,v12); ...];

[(k21,v21); (k22,v22); ...];
... |]

that represents the map
{k11:v11, k12:v12, ...,
k21:v21, k22:v22, ..., ...}.

RI: No key appears more than once in the array (so, no
duplicate keys in association lists). All keys are
in the right buckets: if [k] is in [buckets] at index
[b] then [hash(k) = b]. The output of [hash] must always
be non-negative. [hash] must run in constant time. *)

What would the efficiency of insert, find, and remove be for this rep type? All require
• hashing the key (constant time),
• indexing into the appropriate bucket (constant time), and
• finding out whether the key is already in the association list (linear in the number of elements in that list).

So the efficiency of the hash table depends on the number of elements in each bucket. That, in turn, is determined by how
well the hash function distributes keys across all the buckets.
A terrible hash function, such as the constant function fun k -> 42, would put all keys into same bucket. Then every
operation would be linear in the number 𝑛 of bindings in the map—that is, 𝑂(𝑛). We definitely don’t want that.
Instead, we want hash functions that distribute keys more or less randomly across the buckets. Then the expected length
of every bucket will be about the same. If we could arrange that, on average, the bucket length were a constant 𝐿, then
insert, find, and remove would all in expectation run in time 𝑂(𝐿).
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Resizing

How could we arrange buckets to have expected constant length? To answer that, let’s think about the number of bindings
and buckets in the table. Define the load factor of the table to be

number of bindings
number of buckets

So a table with 20 bindings and 10 buckets has a load factor of 2, and a table with 10 bindings and 20 buckets has a load
factor of 0.5. The load factor is therefore the average number of bindings in a bucket. So if we could keep the load factor
constant, we could keep 𝐿 constant, thereby keeping the performance to (expected) constant time.
Toward that end, note that the number of bindings is not under the control of the hash table implementer—but the number
of buckets is. So by changing the number of buckets, the implementer can change the load factor. A common strategy
is to keep the load factor from approximately 1/2 to 2. Then each bucket contains only a couple bindings, and expected
constant-time performance is guaranteed.
There’s no way for the implementer to know in advance, though, exactly how many buckets will be needed. So instead,
the implementer will have to resize the bucket array whenever the load factor gets too high. Typically, the newly allocated
bucket will be of a size to restore the load factor to about 1.
Putting those two ideas together, if the load factor reaches 2, then there are twice as many bindings as buckets in the table.
So by doubling the size of the array, we can restore the load factor to 1. Similarly, if the load factor reaches 1/2, then
there are twice as many buckets as bindings, and halving the size of the array will restore the load factor to 1.
Resizing the bucket array to become larger is an essential technique for hash tables. Resizing it to become smaller, though,
is not essential. As long as the load factor is bounded by a constant from above, we can achieve expected constant bucket
length. So not all implementations will reduce the size of the array. Although doing so would recover some space, it
might not be worth the effort. That’s especially true if the size of the hash table cycles over time: although sometimes it
becomes smaller, eventually it becomes bigger again.
Unfortunately, resizing would seem to ruin our expected constant-time performance though. Insertion of a binding might
cause the load factor to go over 2, thus causing a resize. When the resize occurs, all the existing bindings must be rehashed
and added to the new bucket array. Thus, insertion has become a worst-case linear time operation! The same is true for
removal, if we resize the array to become smaller when the load factor is too low.

Implementation

The implementation of a hash table, below, puts together all the pieces we discussed above.

module HashMap : TableMap = struct

(** AF and RI: above. *)
type ('k, 'v) t = {

hash : 'k -> int;
mutable size : int;
mutable buckets : ('k * 'v) list array

}

(** [capacity tab] is the number of buckets in [tab].
Efficiency: O(1). *)

let capacity {buckets} =
Array.length buckets

(** [load_factor tab] is the load factor of [tab], i.e., the number of
bindings divided by the number of buckets. *)

let load_factor tab =

(continues on next page)
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float_of_int tab.size /. float_of_int (capacity tab)

(** Efficiency: O(n). *)
let create hash n =

{hash; size = 0; buckets = Array.make n []}

(** [index k tab] is the index at which key [k] should be stored in the
buckets of [tab].
Efficiency: O(1). *)

let index k tab =
(tab.hash k) mod (capacity tab)

(** [insert_no_resize k v tab] inserts a binding from [k] to [v] in [tab]
and does not resize the table, regardless of what happens to the
load factor.
Efficiency: expected O(L). *)

let insert_no_resize k v tab =
let b = index k tab in (* O(1) *)
let old_bucket = tab.buckets.(b) in
tab.buckets.(b) <- (k,v) :: List.remove_assoc k old_bucket; (* O(L) *)
if not (List.mem_assoc k old_bucket) then
tab.size <- tab.size + 1;

()

(** [rehash tab new_capacity] replaces the buckets array of [tab] with a new
array of size [new_capacity], and re-inserts all the bindings of [tab]
into the new array. The keys are re-hashed, so the bindings will
likely land in different buckets.
Efficiency: O(n), where n is the number of bindings. *)

let rehash tab new_capacity =
(* insert [(k, v)] into [tab] *)
let rehash_binding (k, v) =
insert_no_resize k v tab

in
(* insert all bindings of bucket into [tab] *)
let rehash_bucket bucket =
List.iter rehash_binding bucket

in
let old_buckets = tab.buckets in
tab.buckets <- Array.make new_capacity []; (* O(n) *)
tab.size <- 0;
(* [rehash_binding] is called by [rehash_bucket] once for every binding *)
Array.iter rehash_bucket old_buckets (* expected O(n) *)

(* [resize_if_needed tab] resizes and rehashes [tab] if the load factor
is too big or too small. Load factors are allowed to range from
1/2 to 2. *)

let resize_if_needed tab =
let lf = load_factor tab in
if lf > 2.0 then
rehash tab (capacity tab * 2)

else if lf < 0.5 then
rehash tab (capacity tab / 2)

else ()

(** Efficiency: O(n). *)

(continues on next page)
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let insert k v tab =
insert_no_resize k v tab; (* O(L) *)
resize_if_needed tab (* O(n) *)

(** Efficiency: expected O(L). *)
let find k tab =

List.assoc_opt k tab.buckets.(index k tab)

(** [remove_no_resize k tab] removes [k] from [tab] and does not trigger
a resize, regardless of what happens to the load factor.
Efficiency: expected O(L). *)

let remove_no_resize k tab =
let b = index k tab in
let old_bucket = tab.buckets.(b) in
tab.buckets.(b) <- List.remove_assoc k tab.buckets.(b);
if List.mem_assoc k old_bucket then
tab.size <- tab.size - 1;

()

(** Efficiency: O(n). *)
let remove k tab =

remove_no_resize k tab; (* O(L) *)
resize_if_needed tab (* O(n) *)

(** Efficiency: O(n). *)
let bindings tab =

Array.fold_left
(fun acc bucket ->

List.fold_left
(* 1 cons for every binding, which is O(n) *)
(fun acc (k,v) -> (k,v) :: acc)
acc bucket)

[] tab.buckets

(** Efficiency: O(n^2). *)
let of_list hash lst =

let m = create hash (List.length lst) in (* O(n) *)
List.iter (fun (k, v) -> insert k v m) lst; (* n * O(n) is O(n^2) *)
m

end

An optimization of rehash is possible. When it calls insert_no_resize to re-insert a binding, extra work is being
done: there’s no need for that insertion to call remove_assoc or mem_assoc, because we are guaranteed the binding
does not contain a duplicate key. We could omit that work. If the hash function is good, it’s only a constant amount
of work that we save. But if the hash function is bad and doesn’t distribute keys uniformly, that could be an important
optimization.
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10.1.5 Hash Functions

Hash tables are one of the most useful data structures ever invented. Unfortunately, they are also one of the most misused.
Code built using hash tables often falls far short of achievable performance. There are two reasons for this:

• Clients choose poor hash functions that do not distribute keys randomly over buckets.
• Hash table abstractions do not adequately specify what is required of the hash function, or make it difficult to provide
a good hash function.

Clearly, a bad hash function can destroy our attempts at a constant running time. A lot of obvious hash function choices
are bad. For example, if we’re mapping names to phone numbers, then hashing each name to its length would be a very
poor function, as would a hash function that used only the first name, or only the last name. We want our hash function
to use all of the information in the key. This is a bit of an art. While hash tables are extremely effective when used well,
all too often poor hash functions are used that sabotage performance.
Hash tables work well when the hash function looks random. If it is to look random, this means that any change to a key,
even a small one, should change the bucket index in an apparently random way. If we imagine writing the bucket index as
a binary number, a small change to the key should randomly flip the bits in the bucket index. This is called information
diffusion. For example, a one-bit change to the key should cause every bit in the index to flip with 1/2 probability.
Client vs. implementer. As we’ve described it, the hash function is a single function that maps from the key type to a
bucket index. In practice, the hash function is the composition of two functions, one provided by the client and one by the
implementer. This is because the implementer doesn’t understand the element type, the client doesn’t know how many
buckets there are, and the implementer probably doesn’t trust the client to achieve diffusion.
The client function hash_c first converts the key into an integer hash code, and the implementation function hash_i
converts the hash code into a bucket index. The actual hash function is the composition of these two functions. As a hash
table designer, you need to figure out which of the client hash function and the implementation hash function is going to
provide diffusion. If clients are sufficiently savvy, it makes sense to push the diffusion onto them, leaving the hash table
implementation as simple and fast as possible. The easy way to accomplish this is to break the computation of the bucket
index into three steps.

1. Serialization: Transform the key into a stream of bytes that contains all of the information in the original key. Two
equal keys must result in the same byte stream. Two byte streams should be equal only if the keys are actually
equal. How to do this depends on the form of the key. If the key is a string, then the stream of bytes would simply
be the characters of the string.

2. Diffusion: Map the stream of bytes into a large integer x in a way that causes every change in the stream to affect
the bits of x apparently randomly. There is a tradeoff in performance versus randomness (and security) here.

3. Compression: Reduce that large integer to be within the range of the buckets. For example, compute the hash
bucket index as x mod m. This is particularly cheap if m is a power of two.

Unfortunately, hash table implementations are rarely forthcoming about what they assume of client hash functions. So it
can be hard to know, as a client, how to get good performance from a table. The more information the implementation
can provide to a client about how well distributed keys are in buckets, the better.

10.1.6 Standard Library Hashtbl

Although it’s great to know how to implement a hash table, and to see how mutability is used in doing so, it’s also great
not to have to implement a data structure yourself in your own projects. Fortunately the OCaml standard library does
provide a module Hashtbl [sic] that implements hash tables. You can think of this module as the imperative equivalent
of the functional Map module.
Hash function. The function Hashtbl.hash : 'a -> int takes responsibility for serialization and diffusion. It
is capable of hashing any type of value. That includes not just integers but strings, lists, trees, and so forth. So how does
it run in constant time, if the length of a tree or size of a tree can be arbitrarily large? It looks only at a predetermined
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number ofmeaningful nodes of the structure it is hashing. By default, that number is 10. A meaningful node is an integer,
floating-point number, string, character, booleans or constant constructor. You can see that as we hash these lists:

Hashtbl.hash [1; 2; 3; 4; 5; 6; 7; 8; 9];;
Hashtbl.hash [1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;
Hashtbl.hash [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11];;
Hashtbl.hash [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12];;

- : int = 635296333

- : int = 822221246

- : int = 822221246

- : int = 822221246

The hash values stop changing after the list goes beyond 10 elements. That has implications for how we use this built-in
hash function: it will not necessarily provide good diffusion for large data structures, which means performance could
degrade as collisions become common. To support clients who want to hash such structures, Hashtbl provides another
function hash_param which can be configured to examine more nodes.
Hash table. Here’s an abstract of the hash table interface:

module type Hashtbl = sig
type ('a, 'b) t
val create : int -> ('a, 'b) t
val add : ('a, 'b) t -> 'a -> 'b -> unit
val find : ('a, 'b) t -> 'a -> 'b
val remove : ('a, 'b) t -> 'a -> unit
...

end

The representation type ('a, 'b) Hashtbl.t maps keys of type 'a to values of type 'b. The create function
initializes a hash table to have a given capacity, as our implementation above did. But rather than requiring the client to
provide a hash function, the module uses Hashtbl.hash.
Resizing occurs when the load factor exceeds 2. Let’s see that happen. First, we’ll create a table and fill it up:

open Hashtbl;;
let t = create 16;;
for i = 1 to 16 do
add t i (string_of_int i)

done;;

val t : ('_weak1, '_weak2) Hashtbl.t = <abstr>

- : unit = ()

We can query the hash table to find out how the bindings are distributed over buckets with Hashtbl.stats:

stats t
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- : Hashtbl.statistics =
{num_bindings = 16; num_buckets = 16; max_bucket_length = 3;
bucket_histogram = [|6; 5; 4; 1|]}

The number of bindings and number of buckets are equal, so the load factor is 1. The bucket histogram is an array a in
which a.(i) is the number of buckets whose size is i.
Let’s pump up the load factor to 2:

for i = 17 to 32 do
add t i (string_of_int i)

done;;
stats t;;

- : unit = ()

- : Hashtbl.statistics =
{num_bindings = 32; num_buckets = 16; max_bucket_length = 4;
bucket_histogram = [|3; 3; 3; 5; 2|]}

Now adding one more binding will trigger a resize, which doubles the number of buckets:

add t 33 "33";;
stats t;;

- : unit = ()

- : Hashtbl.statistics =
{num_bindings = 33; num_buckets = 32; max_bucket_length = 3;
bucket_histogram = [|11; 11; 8; 2|]}

But Hashtbl does not implement resize on removal:

for i = 1 to 33 do
remove t i

done;;
stats t;;

- : unit = ()

- : Hashtbl.statistics =
{num_bindings = 0; num_buckets = 32; max_bucket_length = 0;
bucket_histogram = [|32|]}

The number of buckets is still 32, even though all bindings have been removed.

Note: Java’s HashMap has a default constructor HashMap() that creates an empty hash table with a capacity of 16
that resizes when the load factor exceeds 0.75 rather than 2. So Java hash tables would tend to have a shorter bucket
length than OCaml hash tables, but also would tend to take more space to store because of empty buckets.
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Client-provided hash functions. What if a client of Hashtbl found that the default hash function was leading to
collisions, hence poor performance? Then it would make sense to change to a different hash function. To support that,
Hashtbl provides a functorial interface similar to Map. The functor is Hashtbl.Make, and it requires an input of
the following module type:

module type HashedType = sig
type t
val equal : t -> t -> bool
val hash : t -> int

end

Type t is the key type for the table, and the two functions equal and hash say how to compare keys for equality and
how to hash them. If two keys are equal according to equal, they must have the same hash value according to hash. If
that requirement were violated, the hash table would no longer operate correctly. For example, suppose that equal k1
k2 holds but hash k1 <> hash k2. Then k1 and k2 would be stored in different buckets. So if a client added a
binding of k1 to v, then looked up k2, they would not get v back.

Note: That final requirement might sound familiar from Java. There, if you override Object.equals() and
Object.hashCode() you must ensure the same correspondence.

10.2 Amortized Analysis

Our analysis of the efficiency of hash table operations concluded that find runs in expected constant time, where the
modifier “expected” is needed to express the fact the performance is on average and depends on the hash function satisfying
certain properties.
We also concluded that insert would usually run in expected constant time, but that in the worst case it would require
linear time because of needing to rehash the entire table. That kind of defeats the goal of a hash table, which is to offer
constant-time performance, or at least as close to it as we can get.
It turns out there is another way of looking at this analysis that allows us to conclude that insert does have “amortized”
expected constant time performance—that is, for excusing the occasional worst-case linear performance. Right away, we
have to acknowledge this technique is just a change in perspective. We’re not going to change the underlying algorithms.
The insert algorithm will still have worst-case linear performance. That’s a fact.
But the change in perspective we now undertake is to recognize that if it’s very rare for insert to require linear time,
then maybe we can “spread out” that cost over all the other calls to insert. It’s a creative accounting trick!
Sushi vs. Ramen. Let’s amuse ourselves with a real-world example for a moment. Suppose that you have $20 to spend
on lunches for the week. You like to eat sushi, but you can’t afford to have sushi every day. So instead you eat as follows:

• Monday: $1 ramen
• Tuesday: $1 ramen
• Wednesday: $1 ramen
• Thursday: $1 ramen
• Friday: $16 sushi

Most of the time, your lunch was cheap. On a rare occasion, it was expensive. So you could look at it in one of two ways:
• My worst-case lunch cost was $16.
• My average lunch cost was $4.
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Both are true statements, but maybe the latter is more helpful in understanding your spending habits.
Back to Hash Tables. It’s the same with hash tables. Even though insert is occasionally expensive, it’s so rarely
expensive that the average cost of an operation is actually constant time! But, we need to do more complicated math (or
more complicated than our lunch budgeting anyway) to actually demonstrate that’s true.

10.2.1 Amortized Analysis of Hash Tables

“Amortization” is a financial term. One of its meanings is to pay off a debt over time. In algorithmic analysis, we use it to
refer to paying off the cost of an expensive operation by inflating the cost of inexpensive operations. In effect, we pre-pay
the cost of a later expensive operation by adding some additional cost to earlier cheap operations.
The amortized complexity or amortized running time of a sequence of operations that each have cost 𝑇1, 𝑇2, … , 𝑇𝑛, is just
the average cost of each operation:

𝑇1 + 𝑇2 + ⋯ + 𝑇𝑛
𝑛 .

Thus, even if one operation is especially expensive, we could average that out over a bunch of inexpensive operations.
Applying that idea to a hash table, let’s analyze what happens when an insert operation causes an expensive resize. Assume
the table resizes when the load factor reaches 2. (That is more proactive than OCaml’s Hashtbl, which resizes when
the load factor exceeds 2. It doesn’t really matter which choice we make, but resize-on-reaching will simplify our analysis
a little.)
Suppose the table has 8 bindings and 8 buckets. Then 8 more inserts are made. The first 7 are (expected) constant-time,
but the 8th insert is linear time: it increases the load factor to 2, causing a resize, thus causing rehashing of all 16 bindings
into a new table. The total cost over that series of operations is therefore: the cost of 8 inserts into the old table, plus the
cost of allocating a new 16-element table, plus the cost of 16 inserts into the new table. That is, a total cost of 40. So the
average cost of each operation in the sequence is 40/8 = 5 inserts.
In other words, if we just pretended each insert cost five times its normal price, the final operation in the sequence would
have been “pre-paid” by the extra price we paid for earlier inserts. And all of them would be constant-time, since five
times a constant is still a constant.
Generalizing from the example above, let’s suppose that the number of buckets currently in a hash table is 2𝑛, and that
the load factor is currently 1. Therefore, there are currently 2𝑛 bindings in the table. Next:

• A series of 2𝑛 − 1 inserts occurs. There are now 2𝑛 + 2𝑛 − 1 bindings in the table.
• One more insert occurs. That brings the number of bindings up to 2𝑛 + 2𝑛, which is 2𝑛+1. But the number of
buckets is 2𝑛, so the load factor just reached 2. A resize is necessary.

• The resize occurs. It costs 2𝑛+1 to allocate memory for the new table. That doubles the number of buckets. All
2𝑛+1 bindings have to be reinserted into the new table, which is of size 2𝑛+1. The load factor is back down to 1.

So in total we did 2𝑛 + 2𝑛+1 inserts, which included 2𝑛 inserts of bindings and 2𝑛+1 re-insertions after the resize. We
also incurred the cost of allocating a new table of size 2𝑛+1 in memory, and that cost is 2𝑛+1.
Over a series of 2𝑛 insert operations, that’s an average cost of 2𝑛+2𝑛+1+2𝑛+1

2𝑛 , which equals 5. So if we just pretend each
insert costs five times its normal price, every operation in the sequence is amortized (and expected) constant time.
Doubling vs. Constant-size Increasing. Notice that it is crucial that the array size grows by doubling (or at least
geometrically). A bad mistake would be to instead grow the array by a fixed increment—for example, 100 buckets at
time. Then we’d be in real trouble as the number of bindings continued to grow:

• Start with 100 buckets and 100 bindings. The load factor is 1.
• Round 1. Insert 100 bindings. There are now 200 bindings and 100 buckets. The load factor is 2.
• Increase the number of buckets by 100 and rehash. That’s 200 more insertions. The load factor is back down to 1.
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• The average cost of each insert is so far just 3x the cost of an actual insert (100+200 insertions / 100 bindings
inserted). So far so good.

• Round 2. Insert 200 more bindings. There are now 400 bindings and 200 buckets. The load factor is 2.
• Increase the number of buckets by 100 and rehash. That’s 400 more insertions. There are now 400 bindings and
300 buckets. The load factor is 400/300 = 4/3, not 1.

• The average cost of each insert is now (100+200+200+400) / 300 = 3. That’s still okay.
• Round 3. Insert 200 more bindings. There are now 600 bindings and 300 buckets. The load factor is 2.
• Increase the number of buckets by 100 and rehash. That’s 600 more insertions. There are now 600 bindings and
400 buckets. The load factor is 3/2, not 1.

• The average cost of each insert is now (100+200+200+400+200+600) / 500 = 3.4. It’s going up.
• Round 4. Insert 200 more bindings. There are now 800 bindings and 400 buckets. The load factor is 2.
• Increase the number of buckets by 100 and rehash. That’s 800 more insertions. There are now 800 bindings and
500 buckets. The load factor is 8/5, not 1.

• The average cost of each insert is now (100+200+200+400+200+600+200+800) / 700 = 3.9. It’s continuing to go
up, not staying constant.

After 𝑘 rounds we have 200𝑘 bindings and 100(𝑘 + 1) buckets. We have called insert to insert 100 + 200(𝑘 − 1)
bindings, but all the rehashing has caused us to do 100 + 200(𝑘 − 1) + ∑𝑘

𝑖=1 200𝑖 actual insertions. That last term is the
real problem. It’s quadratic:

𝑘
∑
𝑖=1

200𝑖 = 200
𝑘

∑
𝑖=1

𝑖 = 200𝑘(𝑘 + 1)
2 = 100(𝑘2 + 𝑘).

So over a series of 𝑛 calls to insert, we do 𝑂(𝑛2) actual inserts. That makes the amortized cost of insert be 𝑂(𝑛),
which is linear! Not constant.
That’s why it’s so important to double the size of the array at each rehash. It’s what gives us the amortized constant-time
performance.

10.2.2 Amortized Analysis of Batched Queues

The implementation of batched queues with two lists was in a way more efficient than the implementation with just one
list, because it managed to achieve a constant time enqueue operation. But, that came at the tradeoff of making the
dequeue operation sometimes take more than constant time: whenever the outbox became empty, the inbox had to be
reversed, which required an additional linear-time operation.
As we observed then, the reversal is relatively rare. It happens only when the outbox gets exhausted. Amortized analysis
gives us a way to account for that. We can actually show that the dequeue operation is amortized constant time.
To keep the analysis simple at first, let’s assume the queue starts off with exactly one element 1 already enqueued, and that
we do three enqueue operations of 2, 3, then 4, followed by a single dequeue. The single initial element would end
up in the outbox. All three enqueue operations would cons an element onto the inbox. So just before the dequeue,
the queue looks like:

{o = [1]; i = [4; 3; 2]}

and after the dequeue:

{o = [2; 3; 4]; i = []}

360 Chapter 10. Data Structures



OCaml Programming: Correct + Efficient + Beautiful

It required
• 3 cons operations to do the 3 enqueues, and
• another 3 cons operations to finish the dequeue by reversing the list.

That’s a total of 6 cons operations to do the 4 enqueue and dequeue operations. The average cost is therefore 1.5
cons operations per queue operation. There were other pattern matching operations and record constructions, but those
all took only constant time, so we’ll ignore them.
What about a more complicated situation, where there are enqueues and dequeues interspersed with one another?
Trying to take averages over the series is going to be tricky to analyze. But, inspired by our analysis of hash tables, suppose
we pretend that the cost of each enqueue is twice its actual cost, as measured in cons operations? Then at the time an
element is enqueued, we could “prepay” the later cost that will be incurred when that element is cons’d onto the reversed
list.
The enqueue operation is still constant time, because even though we’re now pretending its cost is 2 instead of 1, it’s
still the case that 2 is a constant. And the dequeue operation is amortized constant time:

• If dequeue doesn’t need to reverse the inbox, it really does just constant work, and
• If dequeue does need to reverse an inbox with 𝑛 elements, it already has 𝑛 units of work “saved up” from each
of the enqueues of those 𝑛 elements.

So if we just pretend each enqueue costs twice its normal price, every operation in a sequence is amortized constant time.
Is this just a bookkeeping trick? Absolutely. But it also reveals the deeper truth that on average we get constant-time
performance, even though some operations might rarely have worst-case linear-time performance.

10.2.3 Bankers and Physicists

Conceptually, amortized analysis can be understood in three ways:
1. Taking the average cost over a series of operations. This is what we’ve done so far.
2. Keeping a “bank account” at each individual element of a data structure. Some operations deposit credits, and

others withdraw them. The goal is for account totals to never be negative. The amortized cost of any operation is
the actual cost, plus any credits deposited, minus any credits spent. So if an operation actually costs 𝑛 but spends
𝑛 − 1 credits, then its amortized cost is just 1. This is called the banker’s method of amortized analysis.

3. Regarding the entire data structure as having an amount of “potential energy” stored up. Some operations increase
the energy, some decrease it. The energy should never be negative. The amortized cost of any operation is its actual
cost, plus the change in potential energy. So if an operation actually costs 𝑛, and before the operation the potential
energy is 𝑛, and after the operation the potential energy is 0, then the amortized cost is 𝑛 + (0 − 𝑛), which is just
0. This is called the physicist’s method of amortized analysis.

The banker’s and physicist’s methods can be easier to use in many situations than a complicated analysis of a series of
operations. Let’s revisit our examples so far to illustrate their use:

• Banker’s method, hash tables: The table starts off empty. When a binding is added to the table, save up 1 credit
in its account. When a rehash becomes necessary, every binding is guaranteed to have 1 credit. Use that credit to
pay for the rehash. Now all bindings have 0 credits. From now on, when a binding is added to the table, save up 1
credit in its account and 1 credit in the account of any one of the bindings that has 0 credits. At the time the next
rehash becomes necessary, the number of bindings has doubled. But since we’ve saved 2 credits at each insertion,
every binding now has 1 credit in its account again. So we can pay for the rehash. The accounts never go negative,
because they always have either 0 or 1 credit.

• Banker’s method, batched queues: When an element is added to the queue, save up 1 credit in its account. When
the inbox must be reversed, use the credit in each element to pay for the cons onto the outbox. Since elements enter
at the inbox and transition at most once to the outbox, every element will have 0 or 1 credits. So the accounts never
go negative.
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• Physicist’s method, hash tables: At first, define the potential energy of the table to be the number of bindings
inserted. That energy will therefore never be negative. Each insertion increases the energy by 1 unit. When the
first rehash is needed after inserting 𝑛 bindings, the potential energy is 𝑛. The potential goes back down to 0 at
the rehash. So the actual cost is 𝑛, but the change in potential is 𝑛, which makes the amortized cost 0, or constant.
From now on, define the potential energy to be twice the number of bindings inserted since the last rehash. Again,
the energy will never be negative. Each insertion increases the energy by 2 units. When the next rehash is needed
after inserting 𝑛 bindings, there will be 2𝑛 bindings that need to be rehashed. Again, the amortized cost will be
constant, because the actual cost of 2𝑛 re-insertions is offset by the 2𝑛 change in potential.

• Physicist’s method, batched queues: Define the potential energy of the queue to be the length of the inbox. It
therefore will never be negative. When a dequeue has to reverse an inbox of length 𝑛, there is an actual cost of
𝑛 but a change in potential of 𝑛 too, which offsets the cost and makes it constant.

The two methods are equivalent in their analytical power:
• To convert a banker’s analysis into a physicist’s, just make the potential be the sum of all the credits in the individual
accounts.

• To convert a physicist’s analysis into a banker’s, just designate one distinguished element of the data structure to be
the only one that will ever hold any credits, and have each operation deposit or withdraw the change in potential
into that element’s account.

So, the choice of which to use really just depends on which is easier for the data structure being analyzed, or which is
easier for you to wrap your head around. You might find one or the other of the methods easier to understand for the data
structures above, and your friend might have a different opinion.

10.2.4 Amortized Analysis and Persistence

Amortized analysis breaks down as a technique when data structures are used persistently. For example, suppose we have
a batched queue q into which we’ve inserted 𝑛 + 1 elements. One element will be in the outbox, and the other 𝑛 will be
in the inbox. Now we do the following:

# let q1 = dequeue q
# let q2 = dequeue q
...
# let qn = dequeue q

Each one of those 𝑛 dequeue operations requires an actual cost of𝑂(𝑛) to reverse the inbox. So the entire series has an
actual cost of 𝑂(𝑛2). But the amortized analysis techniques only apply to the first dequeue. After that, all the accounts
are empty (banker’s method), or the potential is zero (physicist’s), which means the remaining operations can’t use them
to pay for the expensive list reversal. The total cost of the series is therefore 𝑂(𝑛2 − 𝑛), which is 𝑂(𝑛2).
The problem with persistence is that it violates the assumption built-in to amortized analysis that credits (or energy units)
are spent only once. Every persistent copy of the data structure instead tries to spend them itself, not being aware of all
the other copies.
There are more advanced techniques for amortized analysis that can account for persistence. Those techniques are based
on the idea of accumulating debt that is later paid off, rather than accumulating savings that are later spent. The reason
that debt ends up working as an analysis technique can be summed up as: although our banks would never (financially
speaking) allow us to spend money twice, they would be fine with us paying off our debt multiple times. Consult Okasaki’s
Purely Functional Data Structures to learn more.
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10.3 Red-Black Trees

Aswe’ve now seen, hash tables are an efficient data structure for implementing amapADT. They offer amortized, expected
constant-time performance—which is a subtle guarantee because of those “amortized” and “expected” qualifiers we have
to add. Hash tables also require mutability to implement. As functional programmers, we prefer to avoid mutability when
possible.
So, let’s investigate how to implement functional maps. One of the best data structures for that is the red-black tree, which
is a kind of balanced binary search tree that offers worst-case logarithmic performance. So on one hand the performance is
somewhat worse than hash tables (logarithmic vs. constant), but on the other handwe don’t have to qualify the performance
with words like “amortized” and “expected”. Logarithmic is actually still plenty efficient for even very large workloads.
And, we get to avoid mutability!

10.3.1 Binary Search Trees

A binary search tree (BST) is a binary tree with the following representation invariant:
For any node n, every node in the left subtree of n has a value less than n’s value, and every node in the right
subtree of n has a value greater than n’s value.

We call that the BST Invariant.
Here is code that implements a couple of operations on a BST:

type 'a tree = Node of 'a * 'a tree * 'a tree | Leaf

(** [mem x t] is [true] iff [x] is a member of [t]. *)
let rec mem x = function
| Leaf -> false
| Node (y, l, r) ->

if x < y then mem x l
else if x > y then mem x r
else true

(** [insert x t] is [t] with [x] inserted as a member. *)
let rec insert x = function
| Leaf -> Node (x, Leaf, Leaf)
| Node (y, l, r) as t ->

if x < y then Node (y, insert x l, r)
else if x > y then Node (y, l, insert x r)
else t

type 'a tree = Node of 'a * 'a tree * 'a tree | Leaf

val mem : 'a -> 'a tree -> bool = <fun>

val insert : 'a -> 'a tree -> 'a tree = <fun>

What is the running time of those operations? Since insert is just a mem with an extra constant-time node creation,
we focus on the mem operation.
The running time of mem is 𝑂(ℎ), where ℎ is the height of the tree, because every recursive call descends one level in
the tree. What’s the worst-case height of a tree? It occurs with a tree of 𝑛 nodes all in a single long branch—imagine
adding the numbers 1,2,3,4,5,6,7 in order into the tree. So the worst-case running time of mem is still 𝑂(𝑛), where 𝑛 is
the number of nodes in the tree.
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What is a good shape for a tree that would allow for fast lookup? A perfect binary tree, in which every leaf is at the bottom
level, has the smallest possible height for the number of nodes in it. Consider this perfect tree:

Node (2, Node (1, Leaf, Leaf), Node (3, Leaf, Leaf))

We can draw it like this, where . indicates a Leaf, and where we depict the height of each level of the tree:

Height
2 2

/ \
1 3 1

/ \ / \
. . . . 0

The number of nodes 𝑛 in a perfect binary tree is exponential in the tree’s height ℎ. (Note that by “node” here we
specifically mean Node not Leaf.) In particular, 𝑛 = 2ℎ − 1 (which is a fact that we could prove by induction).
Therefore ℎ = log2(𝑛 + 1), which is 𝑂(log𝑛). Lookup operations on a perfect binary search tree would therefore run in
logarithmic time.
Of course, not every tree is perfect. But if we could keep all paths in the tree close to logarithmic in length, then we could
still get good performance. A balanced tree data structure does that: when an element is added or removed, the tree shape
may be changed to ensure that the path lengths do not grow too long. Some examples of balanced binary search tree data
structures, in order from strongest to weakest constraints on path lengths, include:

• 2-3 trees (Hopcroft, 1970): all paths have the same length.
• AVL trees (Adelson-Velsky and Landis, 1962): the length of the shortest and longest path differ by at most one.
• Red-black trees (Guibas and Sedgewick, 1978): the length of the shortest and longest path differ by at most a factor
of two.

Each of those data structures ensures𝑂(log𝑛) running time. Next we will study red-black trees, which have a particularly
nice implementation based on algebraic data types and pattern matching.

10.3.2 Red-Black Trees

Red-black trees are relatively simple balanced binary tree data structure. We color each node of the tree either red or
black.

type color = Red | Black
type 'a rbtree = Leaf | Node of color * 'a * 'a rbtree * 'a rbtree

type color = Red | Black

type 'a rbtree = Leaf | Node of color * 'a * 'a rbtree * 'a rbtree

Note that when we write “node” in this discussion we mean the Node constructor; a Leaf is not a node. We require
the root node of a non-empty tree to be colored black.
In addition to the binary search tree representation invariant, red-black trees must also satisfy these invariants:

1. Local Invariant: There are no two adjacent red nodes along any path.
2. Global Invariant: Every full path (a path from the root to a leaf) has the same number of black nodes. This

number is called the black height of the tree.
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If a tree satisfies these two conditions, it must also be the case that every subtree of the tree also satisfies the conditions.
If a subtree violated either of the conditions, the whole tree would also.

Balance

The red-black tree invariants ensure that the tree stays balanced. The balance is not necessarily perfect — some full paths
can be longer than other full paths — but as the following theorem states, the imbalance cannot be too bad.
Theorem. The length of the longest full path in a red-black tree is at most twice the length of the shortest full path.
Proof. By the Global Invariant, both the longest and shortest full paths must have the same number of black nodes, 𝑏,
which is the black height of the tree. (If there are ties for the longest full path or the shortest full path, it doesn’t matter.
Consider any path among those that are tied.) If the shortest has no red nodes, then its length is just 𝑏. By the Local
Invariant, the longest could at most double that length by adding 𝑏 red nodes. For example, suppose the shortest full
path is B-B-B-B-Leaf, where “B” indicates a black node. That has length four. What is the longest full path the tree
could potentially have given its black height? It would be a path that adds one red node after each black node — that is,
B-R-B-R-B-R-B-R-Leaf, where “R” indicates a red node. The length of that is eight, which is double the length of the
shortest. □

Membership

We check for membership in red-black trees exactly the same way as for binary search trees:

let rec mem x = function
| Leaf -> false
| Node (_, y, l, r) ->

if x < y then mem x l
else if x > y then mem x r
else true

val mem : 'a -> 'a rbtree -> bool = <fun>

What is the efficiency of mem? In the worst case it recurses down to the lowest leaf in the tree and does not find the element
x— that is, the running time is determined by the height of the tree. The height of a red-black tree is logarithmic in the
number of nodes, as the following theorem establishes.
Theorem. A red-black tree with 𝑛 nodes has height ℎ that is at most 𝑂(log𝑛).
Proof. Let 𝑏 be the black height of the tree — that is, the number of black nodes on every full path. We will use 𝑏 to
establish a relationship between ℎ and 𝑛 in the following two lemmas.
Lemma 1: ℎ ≤ 2𝑏. Consider any full path of nodes of length ℎ. There must be 𝑏 black nodes on the path. If there are
some red nodes, then as we argued above in the proof about balance, there can be at most 𝑏 of them. The path therefore
has length at most 2𝑏. Thus, ℎ ≤ 2𝑏.
Lemma 2: 𝑛 ≥ 2𝑏 − 1. Consider the black nodes in the tree. Since every full path must have 𝑏 black nodes, we could
form a perfect tree of height 𝑏 out of those nodes. (Start at the root, which is black. Keep it. Recurse to each child. If
the child is black, keep it. If it is red and has no children, throw it away. If it is red and has children those children must
be black; arbitrarily pick one to replace the red node and throw away the other black child.) That perfect tree would have
at least 2𝑏 − 1 nodes, as discussed above. Thus, 𝑛 ≥ 2𝑏 − 1.
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Finally: We can rewrite Lemma 2 as follows:

𝑛 ≥ 2𝑏 − 1
≡ 2𝑏 ≤ 𝑛 + 1
≡ 𝑏 ≤ log2(𝑛 + 1)
≡ 2𝑏 ≤ 2 log2(𝑛 + 1)

Then with Lemma 1 we can relax the lower bound of 2𝑏 on the left-hand side of that inequality to ℎ, thus obtaining
ℎ ≤ 2 log2(𝑛 + 1). Therefore ℎ is at most 𝑂(log𝑛). □

Insertion: Okasaki’s Algorithm

More interesting is the insert operation. As with standard binary trees, we add a node by replacing the leaf found by
the search procedure. But what can we color that node?

• Coloring it black could increase the black height of that path, violating the Global Invariant.
• Coloring it red could make it adjacent to another red node, violating the Local Invariant.

So neither choice is safe in general. Chris Okasaki (Purely Functional Data Structures, 1999) gives an elegant algorithm
that solves the problem by opting to violate the Local Invariant, then walk up the tree to repair the violation. Here’s how
it works.
We always color the new node red to ensure that the Global Invariant is preserved. If the new node’s parent is already
black, then the Local Invariant has not been violated. In that case, we are done with the insertion: there has been no
violation, and no work is needed to repair the tree. One common case in which this case occurs is when the new node’s
parent is the tree’s root, which will already be colored black.
But if the new node’s parent is red, then the Local Invariant has been violated. In this case, the new node’s parent cannot
be the tree’s root (which is black), therefore the new node has a grandparent. That grandparent must be black, because
the Local Invariant held before we inserted the new node. Now we have work to do to restore the Local Invariant.
The next figure shows the four possible violations that can arise. In it, a-d are possibly empty subtrees, and x-z are values
stored at a node. The nodes colors are indicated with R and B. We’ve marked the lower of the two violating red nodes
with square brackets. As we begin repairing the tree, that marked node will be the new node we just inserted. Therefore
it will have no children—for example, in case 1, a and b would be leaves. (Later on, though, as we walk up the tree to
continue the repair, we can encounter situations in which the marked node has non-empty subtrees.)

1 2 3 4

Bz Bz Bx Bx
/ \ / \ / \ / \

Ry d Rx d a Rz a Ry
/ \ / \ / \ / \

[Rx] c a [Ry] [Ry] d b [Rz]
/ \ / \ / \ / \

a b b c b c c d

Notice that in each of these trees, we’ve carefully labeled the values and nodes such that the BST Invariant ensures the
following ordering:

all nodes in a
<
x
<
all nodes in b

(continues on next page)
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(continued from previous page)

<
y
<
all nodes in c
<
z
<
all nodes in d

Therefore, we can transform the tree to restore the Local Invariant by replacing any of the above four cases with:

Ry
/ \

Bx Bz
/ \ / \

a b c d

This transformation is called a rotation by some authors. Think of y as being a kind of axis or center of the tree. All the
other nodes and subtrees move around it as part of the rotation. Okasaki calls the transformation a balance operation.
Think of it as improving the balance of the tree, as you can see in the shape of the final tree above compared to the
original four cases. This balance function can be written simply and concisely using pattern matching, where each of the
four input cases is mapped to the same output case. In addition, there is the case where the tree is left unchanged locally.

let balance = function
| Black, z, Node (Red, y, Node (Red, x, a, b), c), d
| Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
| Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
| Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) ->

Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d))
| a, b, c, d -> Node (a, b, c, d)

val balance : color * 'a * 'a rbtree * 'a rbtree -> 'a rbtree = <fun>

Why does a rotation (i.e., the balance operation) preserve the BST Invariant? Inspect the figures above to convince yourself
that the rotated tree ensures the proper ordering of all the nodes and subtrees. The choice of which labels were placed
where in the first figure was clever, and is what guarantees that the final tree has the same labels in all four cases.
Why does a rotation preserve the Global Invariant? Before a rotation, the tree satisfies the Global Invariant. That means
the subtrees a-d below the grandparent all have the same black height, and the grandparent adds one to that height. In
the rotated tree, the subtrees are all at the same level, but now x and z add one to that height. The overall black height of
the tree has not changed, and each path continues to have the same black height.
Why does a rotation establish the Local Invariant? The only Local Invariant violation in the tree before the rotation
involved the marked node. After the rotation, that violation has been eliminated. Moreover, since x and z are colored
black after the rotation, they cannot be creating new Local Invariant violations with the root (if any) of subtrees a-d.
However, the root of the rotated tree is now y and is colored red. If that node has a parent—that is, if the grandparent in
cases 1-4 was not the root of the entire tree—then it’s possible we just created a new Local Invariant violation between y
and its parent!
To address that possible new violation, we need to continue walking up the tree from y to the root, and fix further Local
Invariant violations as we go. In the worst case, the process cascades all the way up to the top of the tree and results in
two adjacent red nodes, one of which has just become the root. But if this happens, we can just recolor this new root
from red to black. That finishes restoring the Local Invariant. It also preserves the Global Invariant while increasing the
total black height of the entire tree by one—and that is the only way the black height increases from an insertion. The
insert code using balance is as follows:
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let insert x s =
let rec ins = function

| Leaf -> Node (Red, x, Leaf, Leaf)
| Node (color, y, a, b) as s ->
if x < y then balance (color, y, ins a, b)
else if x > y then balance (color, y, a, ins b)
else s

in
match ins s with
| Node (_, y, a, b) -> Node (Black, y, a, b)
| Leaf -> (* guaranteed to be non-empty *)

failwith "RBT insert failed with ins returning leaf"

val insert : 'a -> 'a rbtree -> 'a rbtree = <fun>

The amount of work done by insert is𝑂(log𝑛). It recurses with ins down the tree to a leaf, which is where the insert
occurs, then calls balance at each step on the way back up. The path to the leaf has length 𝑂(log𝑛), because the tree
was already balanced. And, each call to balance is 𝑂(1) work.

Removal

Removing an element from a red-black tree works analogously. We start with a BST element removal and then do
rebalancing. When an interior (nonleaf) node is removed, we simply splice it out if it has fewer than two nonleaf children;
if it has two nonleaf children, we find the next value in the tree, which must be found inside its right child.
But, balancing the trees during removal from red-black tree requires considering more cases. Deleting a black element
from the tree creates the possibility that some path in the tree has too few black nodes, breaking the Global Invariant.
Germane and Might invented an elegant algorithm to handle that rebalancing Their solution is to create “doubly-black”
nodes that count twice in determining the black height. For more, read their paper: Deletion: The Curse of the Red-Black
Tree Journal of Functional Programming, volume 24, issue 4, July 2014.

10.3.3 Maps and Sets from BSTs

It’s easy to use a BST to implement either a map or a set ADT:
• For a map, just store a binding at each node. The nodes are ordered by the keys. The values are irrelevant to the
ordering.

• For a set, just store an element at each node. The nodes are ordered by the elements.
The OCaml standard library does this for the Map and Set modules. It uses a balanced BST that is a variant of an AVL
tree. AVL trees are balanced BSTs in which the height of paths is allowed to vary by at most 1. The OCaml standard
library modifies that to allow the height to vary by at most 2. Like red-black trees, they achieve worst-case logarithmic
performance.
Now that we have a functional map data structure, how does it compare to our imperative version, the hash table?

• Persistence: Our red-black trees are persistent, but hash tables are ephemeral.
• Performance: We get guaranteed worst-case logarithmic performance with red-black trees, but amortized, ex-
pected constant-time with hash tables. That’s somewhat hard to compare given all the modifiers involved. It’s also
an example of a general phenomenon that persistent data structures often have to pay an extra logarithmic cost over
the equivalent ephemeral data structures.
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• Convenience: We have to provide an ordering function for balanced binary trees, and a hash function for hash
tables. Most libraries provide a default hash function for convenience. But the performance of the hash table does
depend on that hash function truly distributing keys randomly over buckets. If it doesn’t, the “expected” part of the
performance guarantee for hash tables is violated. So the convenience is a double-edged sword.

There isn’t a clear winner here. Since the OCaml library provides both Map and Hashtbl, you get to choose.

10.4 Sequences

A sequence is an infinite list. For example, the infinite list of all natural numbers would be a sequence. So would the list
of all primes, or all Fibonacci numbers. How can we efficiently represent infinite lists? Obviously we can’t store the whole
list in memory.
We already know that OCaml allows us to create recursive functions—that is, functions defined in terms of themselves.
It turns out we can define other values in terms of themselves, too.

let rec ones = 1 :: ones

val ones : int list = [1; <cycle>]

let rec a = 0 :: b and b = 1 :: a

val a : int list = [0; 1; <cycle>]
val b : int list = [1; 0; <cycle>]

The expressions above create recursive values. The list ones contains an infinite sequence of 1, and the lists a and b
alternate infinitely between 0 and 1. As the lists are infinite, the toplevel cannot print them in their entirety. Instead, it
indicates a cycle: the list cycles back to its beginning. Even though these lists represent an infinite sequence of values,
their representation in memory is finite: they are linked lists with back pointers that create those cycles.
Beyond sequences of numbers, there are other kinds of infinite mathematical objects we might want to represent with
finite data structures:

• A stream of inputs read from a file, a network socket, or a user. All of these are unbounded in length, hence we
can think of them as being infinite in length. In fact, many I/O libraries treat reaching the end of an I/O stream as
an unexpected situation and raise an exception.

• A game tree is a tree in which the positions of a game (e.g., chess or tic-tac-toe)_ are the nodes and the edges are
possible moves. For some games this tree is in fact infinite (imagine, e.g., that the pieces on the board could chase
each other around forever), and for other games, it’s so deep that we would never want to manifest the entire tree,
hence it is effectively infinite.

10.4.1 How Not to Define a Sequence

Suppose we wanted to represent the first of those examples: the sequence of all natural numbers. Some of the obvious
things we might try simply don’t work:

(** [from n] is the infinite list [[n; n + 1; n + 2; ...]]. *)
let rec from n = n :: from (n + 1)

val from : int -> int list = <fun>
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(** [nats] is the infinite list of natural numbers [[0; 1; ...]]. *)
let nats = from 0

Stack overflow during evaluation (looping recursion?).

The problem with that attempt is that nats attempts to compute the entire infinite sequence of natural numbers. Because
the function isn’t tail recursive, it quickly overflows the stack. If it were tail recursive, it would go into an infinite loop.
Here’s another attempt, using what we discovered above about recursive values:

let rec nats = 0 :: List.map (fun x -> x + 1) nats

File "[4]", line 1, characters 15-50:
1 | let rec nats = 0 :: List.map (fun x -> x + 1) nats

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Error: This kind of expression is not allowed as right-hand side of `let rec'

That attempt doesn’t work for a more subtle reason. In the definition of a recursive value, we are not permitted to use
a value before it is finished being defined. The problem is that List.map is applied to nats, and therefore pattern
matches to extract the head and tail of nats. But we are in the middle of defining nats, so that use of nats is not
permitted.

10.4.2 How to Correctly Define a Sequence

We can try to define a sequence by analogy to how we can define (finite) lists. Recall that definition:

type 'a mylist = Nil | Cons of 'a * 'a mylist

type 'a mylist = Nil | Cons of 'a * 'a mylist

We could try to convert that into a definition for sequences:

type 'a sequence = Cons of 'a * 'a sequence

type 'a sequence = Cons of 'a * 'a sequence

Note that we got rid of the Nil constructor, because the empty list is finite, but we want only infinite lists.
The problem with that definition is that it’s really no better than the built-in list in OCaml, in that we still can’t define
nats:

let rec from n = Cons (n, from (n + 1))

val from : int -> int sequence = <fun>

let nats = from 0

Stack overflow during evaluation (looping recursion?).
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As before, that definition attempts to go off and compute the entire infinite sequence of naturals.
What we need is a way to pause evaluation, so that at any point in time, only a finite approximation to the infinite sequence
has been computed. Fortunately, we already know how to do that!
Consider the following definitions:

let f1 = failwith "oops"

Exception: Failure "oops".
Raised at Stdlib.failwith in file "stdlib.ml", line 29, characters 17-33
Called from unknown location
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

let f2 = fun x -> failwith "oops"

val f2 : 'a -> 'b = <fun>

f2 ();;

Exception: Failure "oops".
Raised at Stdlib.failwith in file "stdlib.ml", line 29, characters 17-33
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

The definition of f1 immediately raises an exception, whereas the definition of f2 does not. Why? Because f2 wraps
the failwith inside an anonymous function. Recall that, according to the dynamic semantics of OCaml, functions
are already values. So no computation is done inside the body of the function until it is applied. That’s why f2 ()
raises an exception.
We can use this property of evaluation—that functions delay evaluation—to our advantage in defining sequences: let’s
wrap the tail of a sequence inside a function. Since it doesn’t really matter what argument that function takes, we might
as well let it be unit. A function that is used just to delay computation, and in particular one that takes unit as input, is
called a thunk.

(** An ['a sequence] is an infinite list of values of type ['a].
AF: [Cons (x, f)] is the sequence whose head is [x] and tail is [f ()].
RI: none. *)

type 'a sequence = Cons of 'a * (unit -> 'a sequence)

type 'a sequence = Cons of 'a * (unit -> 'a sequence)

This definition turns out to work quite well. We can define nats, at last:

let rec from n = Cons (n, fun () -> from (n + 1))
let nats = from 0

10.4. Sequences 371



OCaml Programming: Correct + Efficient + Beautiful

val from : int -> int sequence = <fun>

val nats : int sequence = Cons (0, <fun>)

We do not get an infinite loop or a stack overflow. The evaluation of nats has paused. Only the first element of it, 0,
has been computed. The remaining elements will not be computed until they are requested. To do that, we can define
functions to access parts of a sequence, similarly to how we can access parts of a list:

(** [hd s] is the head of [s]. *)
let hd (Cons (h, _)) = h

val hd : 'a sequence -> 'a = <fun>

(** [tl s] is the tail of [s]. *)
let tl (Cons (_, t)) = t ()

val tl : 'a sequence -> 'a sequence = <fun>

Note how, in the definition of tl, we must apply the function t to () to obtain the tail of the sequence. That is, we must
force the thunk to evaluate at that point, rather than continue to delay its computation.
For convenience, we can write functions that applyhd ortlmultiple times to take or drop some finite prefix of a sequence:

(** [take n s] is the list of the first [n] elements of [s]. *)
let rec take n s =
if n = 0 then [] else hd s :: take (n - 1) (tl s)

(** [drop n s] is all but the first [n] elements of [s]. *)
let rec drop n s =
if n = 0 then s else drop (n - 1) (tl s)

val take : int -> 'a sequence -> 'a list = <fun>

val drop : int -> 'a sequence -> 'a sequence = <fun>

For example:

take 10 nats

- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]
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10.4.3 Programming with Sequences

Let’s write some functions that manipulate sequences. It will help to have a notation for sequences to use as part of
documentation. Let’s use <a; b; c; ...> to denote the sequence that has elements a, b, and c at its head, followed
by infinitely many other elements.
Here are functions to square a sequence, and to sum two sequences:

(** [square <a; b; c; ...>] is [<a * a; b * b; c * c; ...]. *)
let rec square (Cons (h, t)) =
Cons (h * h, fun () -> square (t ()))

(** [sum <a1; a2; a3; ...> <b1; b2; b3; ...>] is
[<a1 + b1; a2 + b2; a3 + b3; ...>]. *)

let rec sum (Cons (h1, t1)) (Cons (h2, t2)) =
Cons (h1 + h2, fun () -> sum (t1 ()) (t2 ()))

val square : int sequence -> int sequence = <fun>

val sum : int sequence -> int sequence -> int sequence = <fun>

Note how the basic template for defining both functions is the same:
• Pattern match against the input sequence(s), which must be Cons of a head and a tail function (a thunk).
• Construct a sequence as the output, which must be Cons of a new head and a new tail function (a thunk).
• In constructing the new tail function, delay the evaluation of the tail by immediately starting with fun () ->
....

• Inside the body of that thunk, recursively apply the function being defined (square or sum) to the result of forcing
a thunk (or thunks) to evaluate.

Of course, squaring and summing are just two possible ways of mapping a function across a sequence or sequences. That
suggests we could write a higher-order map function, much like for lists:

(** [map f <a; b; c; ...>] is [<f a; f b; f c; ...>]. *)
let rec map f (Cons (h, t)) =
Cons (f h, fun () -> map f (t ()))

(** [map2 f <a1; b1; c1;...> <a2; b2; c2; ...>] is
[<f a1 b1; f a2 b2; f a3 b3; ...>]. *)

let rec map2 f (Cons (h1, t1)) (Cons (h2, t2)) =
Cons (f h1 h2, fun () -> map2 f (t1 ()) (t2 ()))

let square' = map (fun n -> n * n)
let sum' = map2 ( + )

val map : ('a -> 'b) -> 'a sequence -> 'b sequence = <fun>

val map2 : ('a -> 'b -> 'c) -> 'a sequence -> 'b sequence -> 'c sequence =
<fun>

val square' : int sequence -> int sequence = <fun>
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val sum' : int sequence -> int sequence -> int sequence = <fun>

Now that we have a map function for sequences, we can successfully define nats in one of the clever ways we originally
attempted:

let rec nats = Cons (0, fun () -> map (fun x -> x + 1) nats)

val nats : int sequence = Cons (0, <fun>)

take 10 nats

- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

Why does this work? Intuitively, nats is <0; 1; 2; 3; ...>, so mapping the increment function over nats is
<1; 2; 3; 4; ...>. If we cons 0 onto the beginning of <1; 2; 3; 4; ...>, we get <0; 1; 2; 3; ...>,
as desired. The recursive value definition is permitted, because we never attempt to use nats until after its definition is
finished. In particular, the thunk delays nats from being evaluated on the right-hand side of the definition.
Here’s another clever definition. Consider the Fibonacci sequence <1; 1; 2; 3; 5; 8; ...>. If we take the tail
of it, we get <1; 2; 3; 5; 8; 13; ...>. If we sum those two sequences, we get <2; 3; 5; 8; 13; 21;
...>. That’s nothing other than the tail of the tail of the Fibonacci sequence. So if we were to prepend [1; 1] to it,
we’d have the actual Fibonacci sequence. That’s the intuition behind this definition:

let rec fibs =
Cons (1, fun () ->

Cons (1, fun () ->
sum fibs (tl fibs)))

val fibs : int sequence = Cons (1, <fun>)

And it works!

take 10 fibs

- : int list = [1; 1; 2; 3; 5; 8; 13; 21; 34; 55]

Unfortunately, it’s highly inefficient. Every time we force the computation of the next element, it required recomputing
all the previous elements, twice: once for fibs and once for tl fibs in the last line of the definition. Try running the
code yourself. By the time we get up to the 30th number, the computation is noticeably slow; by the time of the 100th,
it seems to last forever.
Could we do better? Yes, with a little help from a new language feature: laziness. We discuss it, next.
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10.4.4 Laziness

The example with the Fibonacci sequence demonstrates that it would be useful if the computation of a thunk happened
only once: when it is forced, the resulting value could be remembered, and if the thunk is ever forced again, that value
could immediately be returned instead of recomputing it. That’s the idea behind the OCaml Lazy module:

module Lazy :
sig
type 'a t = 'a lazy_t
val force : 'a t -> 'a
...

end

A value of type 'a Lazy.t is a value of type 'a whose computation has been delayed. Intuitively, the language is
being lazy about evaluating it: it won’t be computed until specifically demanded. The way that demand is expressed with
by forcing the evaluation with Lazy.force, which takes the 'a Lazy.t and causes the 'a inside it to finally be
produced. The first time a lazy value is forced, the computation might take a long time. But the result is cached aka
memoized, and any subsequent time that lazy value is forced, the memoized result will be returned immediately without
recomputing it.

Note: “Memoized” really is the correct spelling of this term. We didn’t misspell “memorized”, though it might look that
way.

The Lazy module doesn’t contain a function that produces a 'a Lazy.t. Instead, there is a keyword built-in to the
OCaml syntax that does it: lazy e.

• Syntax: lazy e

• Static semantics: If e : u, then lazy e : u Lazy.t.
• Dynamic semantics: lazy e does not evaluate e to a value. Instead, it produces a suspension that, when later
forced, will evaluate e to a value v and return v. Moreover, that suspension remembers that v is its forced value.
And if the suspension is ever forced again, it immediately returns v instead of recomputing it.

Note: OCaml’s usual evaluation strategy is eager aka strict: it always evaluate an argument before function application.
If you want a value to be computed lazily, you must specifically request that with the lazy keyword. Other function
languages, notably Haskell, are lazy by default. Laziness can be pleasant when programming with infinite data structures.
But lazy evaluation makes it harder to reason about space and time, and it has unpleasant interactions with side effects.

To illustrate the use of lazy values, let’s try computing the 30th Fibonacci number using this definition of fibs:

let rec fibs =
Cons (1, fun () ->

Cons (1, fun () ->
sum fibs (tl fibs)))

val fibs : int sequence = Cons (1, <fun>)

Tip: These next few examples will make much more sense if you run them interactively, rather than just reading this
page.

If we try to get the 30th Fibonacci number, it will take a long time to compute:
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let fib30long = take 30 fibs |> List.rev |> List.hd

val fib30long : int = 832040

But if we wrap evaluation of that with lazy, it will return immediately, because the evaluation of that number has been
suspended:

let fib30lazy = lazy (take 30 fibs |> List.rev |> List.hd)

val fib30lazy : int lazy_t = <lazy>

Later on we could force the evaluation of that lazy value, and that will take a long time to compute, as did fib30long:

let fib30 = Lazy.force fib30lazy

val fib30 : int = 832040

But if we ever try to recompute that same lazy value, it will return immediately, because the result has been memoized:

let fib30fast = Lazy.force fib30lazy

val fib30fast : int = 832040

Nonetheless, we still haven’t totally succeeded. That particular computation of the 30th Fibonacci number has been
memoized, but if we later define some other computation of another it won’t be sped up the first time it’s computed:

let fib29 = take 29 fibs |> List.rev |> List.hd

val fib29 : int = 514229

What we really want is to change the representation of sequences itself to make use of lazy values.

Lazy Sequences

Here’s a representation for infinite lists using lazy values:

type 'a lazysequence = Cons of 'a * 'a lazysequence Lazy.t

type 'a lazysequence = Cons of 'a * 'a lazysequence Lazy.t

We’ve gotten rid of the thunk, and instead are using a lazy value as the tail of the lazy sequence. If we ever want that tail
to be computed, we force it.
For sake of comparison, the following two modules implement the Fibonacci sequence with sequences, then with lazy
sequences. Try computing the 30th Fibonacci number with both modules, and you’ll see that the lazy-sequence imple-
mentation is much faster than the standard-sequence implementation.
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module SequenceFibs = struct
type 'a sequence = Cons of 'a * (unit -> 'a sequence)

let hd : 'a sequence -> 'a =
fun (Cons (h, _)) -> h

let tl : 'a sequence -> 'a sequence =
fun (Cons (_, t)) -> t ()

let rec take_aux n (Cons (h, t)) lst =
if n = 0 then lst
else take_aux (n - 1) (t ()) (h :: lst)

let take : int -> 'a sequence -> 'a list =
fun n s -> List.rev (take_aux n s [])

let nth : int -> 'a sequence -> 'a =
fun n s -> List.hd (take_aux (n + 1) s [])

let rec sum : int sequence -> int sequence -> int sequence =
fun (Cons (h_a, t_a)) (Cons (h_b, t_b)) ->
Cons (h_a + h_b, fun () -> sum (t_a ()) (t_b ()))

let rec fibs =
Cons(1, fun () ->
Cons(1, fun () ->

sum (tl fibs) fibs))

let nth_fib n =
nth n fibs

end

module LazyFibs = struct

type 'a lazysequence = Cons of 'a * 'a lazysequence Lazy.t

let hd : 'a lazysequence -> 'a =
fun (Cons (h, _)) -> h

let tl : 'a lazysequence -> 'a lazysequence =
fun (Cons (_, t)) -> Lazy.force t

let rec take_aux n (Cons (h, t)) lst =
if n = 0 then lst else
take_aux (n - 1) (Lazy.force t) (h :: lst)

let take : int -> 'a lazysequence -> 'a list =
fun n s -> List.rev (take_aux n s [])

let nth : int -> 'a lazysequence -> 'a =
fun n s -> List.hd (take_aux (n + 1) s [])

let rec sum : int lazysequence -> int lazysequence -> int lazysequence =
fun (Cons (h_a, t_a)) (Cons (h_b, t_b)) ->
Cons (h_a + h_b, lazy (sum (Lazy.force t_a) (Lazy.force t_b)))

(continues on next page)
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(continued from previous page)

let rec fibs =
Cons(1, lazy (
Cons(1, lazy (

sum (tl fibs) fibs))))

let nth_fib n =
nth n fibs

end

module SequenceFibs :
sig

type 'a sequence = Cons of 'a * (unit -> 'a sequence)
val hd : 'a sequence -> 'a
val tl : 'a sequence -> 'a sequence
val take_aux : int -> 'a sequence -> 'a list -> 'a list
val take : int -> 'a sequence -> 'a list
val nth : int -> 'a sequence -> 'a
val sum : int sequence -> int sequence -> int sequence
val fibs : int sequence
val nth_fib : int -> int

end

module LazyFibs :
sig

type 'a lazysequence = Cons of 'a * 'a lazysequence Lazy.t
val hd : 'a lazysequence -> 'a
val tl : 'a lazysequence -> 'a lazysequence
val take_aux : int -> 'a lazysequence -> 'a list -> 'a list
val take : int -> 'a lazysequence -> 'a list
val nth : int -> 'a lazysequence -> 'a
val sum : int lazysequence -> int lazysequence -> int lazysequence
val fibs : int lazysequence
val nth_fib : int -> int

end

10.5 Memoization

In the previous section, we saw that the Lazy module memoizes the results of computations, so that no time has to
be wasted on recomputing them. Memoization is a powerful technique for asymptotically speeding up simple recursive
algorithms, without having to change the way the algorithm works.
Let’s see apply the Abstraction Principle and invent a way to memoize any function, so that the function only had to be
evaluated once on any given input. We’ll end up using imperative data structures (arrays and hash tables) as part of our
solution.
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10.5.1 Fibonacci

Let’s again consider the problem of computing the nth Fibonacci number. The naive recursive implementation takes
exponential time, because of the recomputation of the same Fibonacci numbers over and over again:

let rec fib n = if n < 2 then 1 else fib (n - 1) + fib (n - 2)

val fib : int -> int = <fun>

Note: To be precise, its running time turns out to be 𝑂(𝜙𝑛), where 𝜙 is the golden ratio, 1+
√

5
2 .

If we record Fibonacci numbers as they are computed, we can avoid this redundant work. The idea is that whenever we
compute f n, we store it in a table indexed by n. In this case the indexing keys are integers, so we can implement this
table using an array:

let fibm n =
let memo : int option array = Array.make (n + 1) None in
let rec f_mem n =

match memo.(n) with
| Some result -> (* computed already *) result
| None ->

let result =
if n < 2 then 1 else f_mem (n - 1) + f_mem (n - 2)

in
(* record in table *)
memo.(n) <- Some result;
result

in
f_mem n

val fibm : int -> int = <fun>

The function f_mem defined inside fibm contains the original recursive algorithm, except before doing that calculation
it first checks if the result has already been computed and stored in the table in which case it simply returns the result.
How do we analyze the running time of this function? The time spent in a single call to f_mem is 𝑂(1) if we exclude the
time spent in any recursive calls that it happens to make. Now we look for a way to bound the total number of recursive
calls by finding some measure of the progress that is being made.
A good choice of progress measure, not only here but also for many uses of memoization, is the number of non-empty
entries in the table (i.e., entries that contain Some n rather than None). Each time f_mem makes the two recursive
calls it also increases the number of non-empty entries by one (filling in a formerly empty entry in the table with a new
value). Since the table has only n entries, there can thus only be a total of 𝑂(𝑛) calls to f_mem, for a total running time
of 𝑂(𝑛) (because we established above that each call takes 𝑂(1) time). This speedup from memoization thus reduces the
running time from exponential to linear, a huge change—e.g., for 𝑛 = 4 the speedup from memoization is more than a
factor of a million!
The key to being able to apply memoization is that there are common sub-problems which are being solved repeatedly.
Thus we are able to use some extra storage to save on repeated computation.
Although this code uses imperative constructs (specifically, array update), the side effects are not visible outside the func-
tion fibm. So from a client’s perspective, fibm is functional. There’s no need to mention the imperative implementation
(i.e., the benign side effects) that are used internally.
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10.5.2 Memoization Using Higher-order Functions

Now that we’ve seen an example of memoizing one function, let’s use higher-order functions to memoize any function.
First, consider the case of memoizing a non-recursive function f. In that case we simply need to create a hash table that
stores the corresponding value for each argument that f is called with (and to memoize multi-argument functions we can
use currying and uncurrying to convert to a single argument function).

let memo f =
let h = Hashtbl.create 11 in
fun x ->

try Hashtbl.find h x
with Not_found ->
let y = f x in
Hashtbl.add h x y;
y

val memo : ('a -> 'b) -> 'a -> 'b = <fun>

For recursive functions, however, the recursive call structure needs to be modified. This can be abstracted out independent
of the function that is being memoized:

let memo_rec f =
let h = Hashtbl.create 16 in
let rec g x =

try Hashtbl.find h x
with Not_found ->
let y = f g x in
Hashtbl.add h x y;
y

in
g

val memo_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>

Now we can slightly rewrite the original fib function above using this general memoization technique:

let fib_memo =
let fib self n =

if n < 2 then 1 else self (n - 1) + self (n - 2)
in
memo_rec fib

val fib_memo : int -> int = <fun>
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10.5.3 Just for Fun: Party Optimization

Suppose we want to throw a party for a company whose org chart is a binary tree. Each employee has an associated “fun
value” and we want the set of invited employees to have a maximum total fun value. However, no employee is fun if
his superior is invited, so we never invite two employees who are connected in the org chart. (The less fun name for this
problem is the maximum weight independent set in a tree.) For an org chart with 𝑛 employees, there are 2𝑛 possible
invitation lists, so the naive algorithm that compares the fun of every valid invitation list takes exponential time.
We can use memoization to turn this into a linear-time algorithm. We start by defining a variant type to represent the
employees. The int at each node is the fun.

type tree = Empty | Node of int * tree * tree

Now, how can we solve this recursively? One important observation is that in any tree, the optimal invitation list that
doesn’t include the root node will be the union of optimal invitation lists for the left and right subtrees. And the optimal
invitation list that does include the root node will be the union of optimal invitation lists for the left and right children
that do not include their respective root nodes. So it seems useful to have functions that optimize the invite lists for the
case where the root node is required to be invited, and for the case where the root node is excluded. We’ll call these two
functions party_in and party_out. Then the result of party is just the maximum of these two functions:

module Unmemoized = struct
type tree =

| Empty
| Node of int * tree * tree

(* Returns optimum fun for t. *)
let rec party t = max (party_in t) (party_out t)

(* Returns optimum fun for t assuming the root node of t
* is included. *)

and party_in t =
match t with
| Empty -> 0
| Node (v, left, right) -> v + party_out left + party_out right

(* Returns optimum fun for t assuming the root node of t
* is excluded. *)

and party_out t =
match t with
| Empty -> 0
| Node (v, left, right) -> party left + party right

end

module Unmemoized :
sig

type tree = Empty | Node of int * tree * tree
val party : tree -> int
val party_in : tree -> int
val party_out : tree -> int

end

This code has exponential running time. But notice that there are only 𝑛 possible distinct calls to party. If we change the
code to memoize the results of these calls, the performance will be linear in 𝑛. Here is a version that memoizes the result
of party and also computes the actual invitation lists. Notice that this code memoizes results directly in the tree.
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module Memoized = struct
(* This version memoizes the optimal fun value for each tree node. It

also remembers the best invite list. Each tree node has the name of
the employee as a string. *)

type tree =
| Empty
| Node of

int * string * tree * tree * (int * string list) option ref

let rec party t : int * string list =
match t with
| Empty -> (0, [])
| Node (_, name, left, right, memo) -> (

match !memo with
| Some result -> result
| None ->

let infun, innames = party_in t in
let outfun, outnames = party_out t in
let result =

if infun > outfun then (infun, innames)
else (outfun, outnames)

in
memo := Some result;
result)

and party_in t =
match t with
| Empty -> (0, [])
| Node (v, name, l, r, _) ->

let lfun, lnames = party_out l and rfun, rnames = party_out r in
(v + lfun + rfun, name :: lnames @ rnames)

and party_out t =
match t with
| Empty -> (0, [])
| Node (_, _, l, r, _) ->

let lfun, lnames = party l and rfun, rnames = party r in
(lfun + rfun, lnames @ rnames)

end

module Memoized :
sig

type tree =
Empty

| Node of int * string * tree * tree * (int * string list) option ref
val party : tree -> int * string list
val party_in : tree -> int * string list
val party_out : tree -> int * string list

end

Why was memoization so effective for solving this problem? As with the Fibonacci algorithm, we had the overlapping
sub-problems property, in which the naive recursive implementation called the function party many times with the same
arguments. Memoization saves all those calls. Further, the party optimization problem has the property of optimal
substructure, meaning that the optimal answer to a problem is computed from optimal answers to sub-problems. Not all
optimization problems have this property. The key to using memoization effectively for optimization problems is to figure
out how to write a recursive function that implements the algorithm and has two properties. Sometimes this requires
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thinking carefully.

10.6 Persistent Arrays

OCaml’s built-in array type offers constant-time get and set operations. But it is an ephemeral data structure. That
leads to the question: could we have persistent arrays, and if so, how good of performance could we get?
Here is the interface we would like to implement:

module type PersistentArray = sig
type 'a t
(** The type of persistent arrays whose elements have type ['a]. The

array indexing is zero based, meaning that the first element is at
index [0], and the last element is at index [n - 1], where [n] is
the length of the array. Any index less than [0] or greater
than [n - 1] is out of bounds. *)

val make : int -> 'a -> 'a t
(** [make n x] is a persistent array of length [n], with each element

initialized to [x]. Raises [Invalid_argument] if [n] is negative
or too large for the system. *)

val length : 'a t -> int
(** [length a] is the number of elements in [a]. *)

val get : 'a t -> int -> 'a
(** [get a i] is the element at index [i] in [a]. Raises [Invalid_argument]

if [i] is out of bounds. *)

val set : 'a t -> int -> 'a -> 'a t
(** [set a i x] is an array that stores [x] at index [i] and otherwise is

the same as [a]. Raises: [Invalid_argument] if [i] is out of bounds. *)
end

module type PersistentArray =
sig

type 'a t
val make : int -> 'a -> 'a t
val length : 'a t -> int
val get : 'a t -> int -> 'a
val set : 'a t -> int -> 'a -> 'a t

end

That interface essentially the same as OCaml’s Array module, but reduced to just four essential functions.
We’ll next see three implementations of that interface. Each will achieve progressively better performance. Our final
implementation is based on Conchon and Filliâtre (2007); see the end of this section for citations.
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10.6.1 Copy-On-Set Arrays

The easiest implementation of persistent arrays is to just make a copy of the entire array on each set operation. That
way, old copies of the array persist—they are not changed by later set operations. Here is the implementation:

module CopyOnSetArray : PersistentArray = struct
type 'a t = 'a array

(** Efficiency: O(n). *)
let make = Array.make

(** Efficiency: O(1). *)
let length = Array.length

(** Efficiency: O(1). *)
let get = Array.get

(** Efficiency: O(n). *)
let set a i x =

let a' = Array.copy a in (* copy the array *)
a'.(i) <- x; (* mutate one element *)
a'

end

module CopyOnSetArray : PersistentArray

We pay a large price for set in this implementation: instead of 𝑂(1) like array, it is 𝑂(𝑛). We’ll improve on that in
our next implementation.

Note: Before moving on, let’s pause and consider one aspect of CopyOnSetArray that is different than any data
structure we’ve seen before. The interface it satisfies is written in the functional style, but the implementation uses
imperative features. Note that the set operation does not return unit; instead, it produces a new array out of an
old array. Underneath the hood, it achieves that persistence despite using an ephemeral data structure, the array. A
lesson we can learn is that it is possible to build persistent data structures in imperative languages using the features they
provide.

10.6.2 Version-Tree Arrays

The expensive set operation in copy-on-set is doing way too much work. Even though only one array element is being
changed, all of the array elements are copied. To achieve better performance, we could eliminate the copying and instead
keep a little log of all the set operations that have occurred. Each entry in the log would need to record just one change
that has been made. For example, suppose we had the following sequence of operations:

let a0 = make 3 0
let a1 = set a0 1 7
let a2 = set a1 2 8
let a3 = set a1 2 9

Our log would say:
• a0 is [|0; 0; 0|]. That takes linear space to store.
• a1 is the same as a0 except that index 1 is 7. That takes only constant space to store.

384 Chapter 10. Data Structures



OCaml Programming: Correct + Efficient + Beautiful

• a2 is the same as a1 except that index 2 is 8. Again, constant space.
• a3 is the same as a1 except that index 2 is 9. Again, constant space.

Note how both a2 and a3 share the same base array a1, but diverge in different ways by setting index 2 to either 8 or
9. So the structure of this log is best represented not as a list, but as a tree:

(entry for a0)
|

(entry for a1)
/ \

(entry for a2) (entry for a3)

Each of the nodes in that tree tell us what different versions of the array should be. That idea leads us to introduce the
following tree type:

type 'a version_tree =
| Base of 'a array
| Diff of int * 'a * 'a version_tree

type 'a version_tree = Base of 'a array | Diff of int * 'a * 'a version_tree

A Base node contains the base version of the array; in our example above, that would be a0. A Diff node records a
difference that is created by a set operation. The version tree for our example above would look like this:

(Base [|0; 0; 0|]) <---- a0
|

(Diff 1 7) <---- a1
/ \

a2 ----> (Diff 2 8) (Diff 2 9) <---- a3

The tree itself is shown in the middle of that diagram. The pointers for a0 through a3 are to individual nodes of that
tree and capture each of the persistent versions of the array.

Tip: In understanding this version tree type, there is a possibly helpful analogy to association lists. Each of the Diff
nodes is like a cons cell in an association list: both contain a pair of a key (the array index) and a value (the element at
that index). Moreover each cons cell then continues onto another cons cell until eventually reaching the the base case of
nil, just like a version tree eventually reaches the base case of a Base node. The Base node is a little more interesting
than the empty list though, because it contains an entire array.

Set. To implement set a i x, all we have to do is create a new Diff node:

let set a i x = Diff (i, x, a)

val set : 'a version_tree -> int -> 'a -> 'a version_tree = <fun>

The efficiency of that is merely 𝑂(1), which is a great improvement over copy-on-set arrays.
Get. To implement get a i, we just have to walk a path in the tree starting at a to find the first Diff that records a
change in index i. If there never is such a change found, we can return the value at that index in the Base node:

let rec get a i =
match a with

(continues on next page)
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| Base b -> b.(i)
| Diff (j, v, a') ->

if i = j then v else get a' i

val get : 'a version_tree -> int -> 'a = <fun>

The efficiency of that implementation is 𝑂(𝑘), where 𝑘 is the number of set operations that have been performed on
the persistent array. In the worst case, all of those set operations were performed on a different index than we want to
get, and they were all performed without creating any branches in the tree — for example, make 2 0 |> set 0 1
|> set 0 2 |> ... |> set 0 k |> get 1. Then the tree degenerates to a linked list, and get is forced to
walk down the entire list to the Base node to find the original value.
Note that 𝑘 might be much bigger or much smaller than 𝑛, the size of the array. So in improving the performance of set,
we potentially worsened the performance of get. In our next implementation, we’ll return to this issue and improve the
performance of get.
Version-tree implementation. Pulling it all together, here is an implementation of persistent arrays using version trees:

module VersionTreeArray : PersistentArray = struct
(** AF: A rep such as [Diff (i, x, Diff (j, y, Base a))] represents the

array [a] except element [j] is [y] and element [i] is [x]. If there
are multiple diffs for an index, the outermost wins. E.g.,
[Diff (i, x, Diff (i, y, Base a))] represents an array whose
element [i] is [x], not [y]. *)

type 'a t =
| Base of 'a array
| Diff of int * 'a * 'a t

(** Efficiency: O(n). *)
let make n x = Base (Array.make n x)

(** Efficiency: O(k), where k is the number of [set] operations that have
been performed on the array. *)

let rec length = function
| Base b -> Array.length b
| Diff (_, _, a) -> length a

(** Efficiency: O(k). *)
let rec get a i =

match a with
| Base b -> b.(i)
| Diff (j, x, a') ->

if i = j then x else get a' i

(** Efficiency: O(1). *)
let set a i x = Diff (i, x, a)

end

module VersionTreeArray : PersistentArray
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10.6.3 Rebasing Version-Tree Arrays

With version trees, we achieved constant-time set operations for a persistent array, but get operations were no longer
constant time — they were 𝑂(𝑘) where 𝑘 was the number of set operations that had been perfromed. Is there a way to
make both operations constant time while still being persistent? The answer is: almost!
Right now, the original version of the array as stored in the Base node is primary and always has constant-time access
with get. We are going to introduce a new rebasing operation that can make any other version of the array become
primary. Then that version will have constant-time access with get, even though other versions will still be 𝑂(𝑘). When
a version 𝑣 of an array is accessed (either with length or set), we will mutate the version tree to make 𝑣 primary. That
means changing the Base node to store the contents according to 𝑣, and adjusting Diff nodes as needed to compensate
for that change in the base.
Since we will now be mutating trees, the representation type needs to change to add a level of indirection:

type 'a rebasing_tree = 'a node ref
and 'a node =
| Base of 'a array
| Diff of int * 'a * 'a rebasing_tree

type 'a rebasing_tree = 'a node ref
and 'a node = Base of 'a array | Diff of int * 'a * 'a rebasing_tree

Make and set. The make and set operations require just the insertion of a call to ref to adapt to the new representation
type:

let make n x = ref (Base (Array.make n x))
let set a i x = ref (Diff (i, x, a))

val make : int -> 'a -> 'a node ref = <fun>

val set : 'a rebasing_tree -> int -> 'a -> 'a node ref = <fun>

Their efficiency is unchanged: 𝑂(𝑛) for make, and 𝑂(1) for set.
Rebase. To rebase a tree we introduce a new recursive helper function rebase : 'a rebasing_tree -> 'a
rebasing tree such that rebase t mutates tree t to make the version of the array represented by t be primary.
Therefore, when rebase returns t is guaranteed to be a ref to a Base node.
There are two cases to consider. First, if t is a ref to a Base node, then our work is already done. That version is already
primary.
Second, if t is a ref to a Diff node, then we have work to do. That node has the form Diff(i, x, t') where t'
represents another version of the array. We call rebase on t' to make it primary; after that, t' must be a ref to a
Base node. That means we have the following situation, where a is an array:

t ---> Diff (i, x, t')
t' ---> Base a

To make t primary, we just need to swap those nodes around, as well as swap the values found at index i. Suppose that
in the Base node a.(i) is y. We mutate a.(i) to be x; let’s call that array a'. And we create a new Diff node
with y:

t ---> Base a'
t' ---> Diff (i, y, t)
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Now t is primary and represents the same version of the array as it did before the rebase.
Here is the code that implements rebasing:

let rec rebase a =
match !a with
| Base b -> b
| Diff (i, x, a') ->

let b = rebase a' in
let old_x = b.(i) in
b.(i) <- x;
a := Base b;
a' := Diff (i, old_x, a);
b

val rebase : 'a rebasing_tree -> 'a array = <fun>

The efficiency of rebase is 𝑂(𝑘), because there could be up to 𝑘 Diff nodes between t and its original Base.
Immediately after calling rebase t, any further calls to rebase t will be only 𝑂(1), because t is now primary.
Get and length. Now that we have rebase, there is only a small modification needed to length and get to call
rebase:

let length a = Array.length (rebase a)
let get a i = (rebase a).(i)

val length : 'a rebasing_tree -> int = <fun>

val get : 'a rebasing_tree -> int -> 'a = <fun>

The efficiency of these is the same as rebase: 𝑂(𝑘) on the first call, then𝑂(1) on future calls as long as no other version
of the array has been accessed in the mean time.
Rebasing version-tree implementation: Pulling it all together, here is an implementation of persistent arrays using
rebasing version trees:

module RebasingVersionTreeArray : PersistentArray = struct
type 'a t = 'a node ref
(** See [VersionTreeArray]. *)

and 'a node =
| Base of 'a array
| Diff of int * 'a * 'a t

(** Efficiency: O(n). *)
let make n x = ref (Base (Array.make n x))

(** Efficiency: O(k), where k is the number of diffs between this version
of the array and its base. At most, that is the number of [set]
operations performed on all versions of the array. If there aren't
any diffs, O(1). After a [rebase], remains O(1) until a different
version of the array is accessed. Not tail recursive. *)

let rec rebase a =
match !a with
| Base b -> b

(continues on next page)
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| Diff (i, x, a') ->
let b = rebase a' in
let old_x = b.(i) in
b.(i) <- x;
a := Base b;
a' := Diff (i, old_x, a);
b

(** Efficiency: Same as [rebase]. *)
let length a = Array.length (rebase a)

(** Efficiency: Same as [rebase]. *)
let get a i = (rebase a).(i)

(** Efficiency: O(1). *)
let set a i v = ref (Diff (i, v, a))

end

module RebasingVersionTreeArray : PersistentArray

With rebasing we now have 𝑂(1) get and set operations on the primary (most recently accessed version) of the array.
We pay an 𝑂(𝑘) price to change to a new primary version, but after that, access to it remains 𝑂(1) until another rebase
occurs.

10.6.4 Citations

Our final implementation is most similar to that of Sylvain Conchon and Jean-Christophe Filliâtre (A persistent union-find
data structure, ACMWorkshop on ML, 2007). They credit Henry Baker for the idea of version trees (Shallow binding in
LISP 1.5, CACM 21:7, 1978) and rebasing (Shallow binding makes functional arrays fast, SIGPLAN Not., 26(8):145-147,
1991).

10.7 Promises

So far we have only considered sequential programs. Execution of a sequential program proceeds one step at a time, with
no choice about which step to take next. Sequential programs are limited in that they are not very good at dealing with
multiple sources of simultaneous input, and they can only execute on a single processor. Many modern applications are
instead concurrent.

10.7.1 Concurrency

Concurrent programs enable computations to overlap in duration, instead of being forced to happen sequentially.
• Graphical user interfaces (GUIs), for example, rely on concurrency to keep the interface responsive while com-
putation continues in the background. Without concurrency, a GUI would “lock up” until the current action is
completed. Sometimes, because of concurrency bugs, that happens anyway—and it’s frustrating for the user!

• A spreadsheet needs concurrency to re-compute all the cells while still keeping the menus and editing capabilities
available for the user.
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• A web browser needs concurrency to read and render web pages incrementally as new data comes in over the
network, to run JavaScript programs embedded in the web page, and to enable the user to navigate through the
page and click on hyperlinks.

Servers are another example of applications that need concurrency. A web server needs to respond to many requests from
clients, and clients would prefer not to wait. If an assignment is released in CMS, for example, you would prefer to be
able to view that assignment at the same time as everyone else in the class, rather than having to “take a number” and wait
for your number to be called—as at the Department of Motor Vehicles, or at an old-fashioned deli, etc.
One of the primary jobs of an operating system (OS) is to provide concurrency. The OS makes it possible for many
applications to be executing concurrently: a music player, a web browser, a code editor, etc. How does it do that? There
are two fundamental, complementary approaches:

• Interleaving: rapidly switch back and forth between computations. For example, execute the music player for 100
milliseconds, then the browser, then the editor, then repeat. That makes it appear as though multiple computations
are occurring simultaneously, but in reality, only one is ever occurring at the same time.

• Parallelism: use hardware that is capable of performing two or more computations literally at the same time.
Many processors these days are multicore, meaning that they have multiple central processing units (CPUs), each
of which can be executing a program simultaneously.

Regardless of the approaches being used, concurrent programming is challenging. Even if there are multiple cores avail-
able for simultaneous use, there are still many other resources that must be shared: memory, the screen, the network
interface, etc. Managing that sharing, especially without introducing bugs, is quite difficult. For example, if two pro-
grams want to communicate by using the computer’s memory, there needs to be some agreement on when each program
is allowed to read and write from the memory. Otherwise, for example, both programs might attempt to write to the same
location in memory, leading to corrupted data. Those kinds of race conditions, where a program races to complete its
operations before another program, are notoriously difficult to avoid.
Themost fundamental challenge is that concurrencymakes the execution of a program become nondeterministic: the order
in which operations occur cannot necessarily be known ahead of time. Race conditions are an example of nondeterminism.
To program correctly in the face of nondeterminism, the programmer is forced to think about all possible orders in which
operations might execute, and ensure that in all of them the program works correctly.
Purely functional programs make nondeterminism easier to reason about, because evaluation of an expression always
returns the same value no matter what. For example, in the expression (2 * 4) + (3 * 5), the operations
can be executed concurrently (e.g., with the left and right products evaluated simultaneously) without changing the an-
swer. Imperative programming is more problematic. For example, the expressions !x and incr x; !x, if executed
concurrently, could give different results depending on which executes first.

10.7.2 Threads

To make concurrent programming easier, computer scientists have invented many abstractions. One of the best known
is threads. Abstractly, a thread is a single sequential computation. There can be many threads running at a time, either
interleaved or in parallel depending on the hardware, and a scheduler handles choosing which threads are running at any
given time. Scheduling can either be preemptive, meaning that the scheduler is permitted to stop a thread and restart it
later without the thread getting a choice in the matter, or cooperative, meaning that the thread must choose to relinquish
control back to the scheduler. The former can lead to race conditions, and the latter can lead to unresponsive applications.
Concretely, a thread is a set of values that are loaded into the registers of a processor. Those values tell the processor where
to find the next instruction to execute, where its stack and heap are located in memory, etc. To implement preemption, a
scheduler sets a timer in the hardware; when the timer goes off, the current thread is interrupted and the scheduler gets
to run. CS 3410 and 4410 cover those concepts in detail.
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10.7.3 Promises

In the functional programming paradigm, one of the best known abstractions for concurrency is promises. Other names for
this idea include futures, deferreds, and delayeds. All those names refer to the idea of a computation that is not yet finished:
it has promised to eventually produce a value in the future, but the completion of the computation has been deferred or
delayed. There may be many such values being computed concurrently, and when the value is finally available, there may
be computations ready to execute that depend on the value.
This idea has been widely adopted in many languages and libraries, including Java, JavaScript, and .NET. Indeed, modern
JavaScript adds an async keyword that causes a function to return a promise, and an await keyword that waits for a
promise to finish computing. There are two widely-used libraries in OCaml that implement promises: Async and Lwt.
Async is developed by Jane Street. Lwt is part of the Ocsigen project, which is a web framework for OCaml.
We now take a deeper look at promises in Lwt. The name of the library was an acronym for “light-weight threads.” But
that was a misnomer, as the GitHub page admits (as of 10/22/18):

Much of the current manual refers to … “lightweight threads” or just “threads.” This will be fixed in the new
manual. [Lwt implements] promises, and has nothing to do with system or preemptive threads.

So don’t think of Lwt as having anything to do with threads: it really is a library for promises.
In Lwt, a promise is a reference: a value that is permitted to mutate at most once. When created, it is like an empty box
that contains nothing. We say that the promise is pending. Eventually the promise can be fulfilled, which is like putting
something inside the box. Instead of being fulfilled, the promise can instead be rejected, in which case the box is filled
with an exception. In either case, fulfilled or rejected, we say that the promise is resolved. Regardless of whether the
promise is resolved or rejected, once the box is filled, its contents may never change.
For now, we will mostly forget about concurrency. Later we’ll come back and incorporate it. But there is one part of the
design for concurrency that we need to address now. When we later start using functions for OS-provided concurrency,
such as concurrent reads and writes from files, there will need to be a division of responsibilities:

• The client code that wants to make use of concurrency will need to access promises: query whether they are resolved
or pending, and make use of the resolved values.

• The library and OS code that implements concurrency will need to mutate the promise—that is, to actually fulfill
or reject it. Client code does not need that ability.

We therefore will introduce one additional abstraction called a resolver. There will be a one-to-one association between
promises and resolvers. The resolver for a promise will be used internally by the concurrency library but not revealed to
clients. The clients will only get access to the promise.
For example, suppose the concurrency library supported an operation to concurrently read a string from the network. The
library would implement that operation as follows:

• Create a new promise and its associated resolver. The promise is pending.
• Call an OS function that will concurrently read the string then invoke the resolver on that string.
• Return the promise (but not resolver) to the client. The OS meanwhile continues to work on reading the string.

You might think of the resolver as being a “private and writeable” value used primarily by the library and the promise as
being a “public and read-only” value used primarily by the client.
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10.7.4 Making Our Own Promises

Here is an interface for our own Lwt-style promises. The names have been changed to make the interface clearer.

(** A signature for Lwt-style promises, with better names. *)
module type PROMISE = sig
type 'a state =

| Pending
| Fulfilled of 'a
| Rejected of exn

type 'a promise

type 'a resolver

(** [make ()] is a new promise and resolver. The promise is pending. *)
val make : unit -> 'a promise * 'a resolver

(** [return x] is a new promise that is already fulfilled with value
[x]. *)

val return : 'a -> 'a promise

(** [state p] is the state of the promise. *)
val state : 'a promise -> 'a state

(** [fulfill r x] fulfills the promise [p] associated with [r] with
value [x], meaning that [state p] will become [Fulfilled x].
Requires: [p] is pending. *)

val fulfill : 'a resolver -> 'a -> unit

(** [reject r x] rejects the promise [p] associated with [r] with
exception [x], meaning that [state p] will become [Rejected x].
Requires: [p] is pending. *)

val reject : 'a resolver -> exn -> unit
end

module type PROMISE =
sig

type 'a state = Pending | Fulfilled of 'a | Rejected of exn
type 'a promise
type 'a resolver
val make : unit -> 'a promise * 'a resolver
val return : 'a -> 'a promise
val state : 'a promise -> 'a state
val fulfill : 'a resolver -> 'a -> unit
val reject : 'a resolver -> exn -> unit

end

To implement that interface, we can make the representation type of 'a promise be a reference to a state:

type 'a state = Pending | Fulfilled of 'a | Rejected of exn
type 'a promise = 'a state ref

type 'a state = Pending | Fulfilled of 'a | Rejected of exn
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type 'a promise = 'a state ref

That way it’s possible to mutate the contents of the promise.
For the representation type of the resolver, we’ll do something a little clever. It will simply be the same as a promise.

type 'a resolver = 'a promise

type 'a resolver = 'a promise

So internally, the two types are exactly the same. But externally no client of the Promise module will be able to
distinguish them. In other words, we’re using the type system to control whether it’s possible to apply certain functions
(e.g., state vs fulfill) to a promise.
To help implement the rest of the functions, let’s start by writing a helper function write_once : 'a promise
-> 'a state -> unit to update the reference. This function will implement changing the state of the promise
from pending to either fulfilled or rejected, and once the state has changed, it will not allow it to be changed again. That
is, it enforces the “write once” invariant.

(** [write_once p s] changes the state of [p] to be [s]. If [p] and [s]
are both pending, that has no effect.
Raises: [Invalid_arg] if the state of [p] is not pending. *)

let write_once p s =
if !p = Pending
then p := s
else invalid_arg "cannot write twice"

val write_once : 'a state ref -> 'a state -> unit = <fun>

Using that helper, we can implement the make function:

let make () =
let p = ref Pending in
p, p

val make : unit -> 'a state ref * 'a state ref = <fun>

The remaining functions in the interface are trivial to implement. Putting it altogether in a module, we have:

module Promise : PROMISE = struct
type 'a state =

| Pending
| Fulfilled of 'a
| Rejected of exn

type 'a promise = 'a state ref

type 'a resolver = 'a promise

(** [write_once p s] changes the state of [p] to be [s]. If [p] and
[s] are both pending, that has no effect. Raises: [Invalid_arg] if
the state of [p] is not pending. *)

let write_once p s =

(continues on next page)
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if !p = Pending then p := s else invalid_arg "cannot write twice"

let make () =
let p = ref Pending in
(p, p)

let return x = ref (Fulfilled x)

let state p = !p

let fulfill r x = write_once r (Fulfilled x)

let reject r x = write_once r (Rejected x)
end

module Promise : PROMISE

10.7.5 Lwt Promises

The types and names used in Lwt are a bit more obscure than those we used above. Lwt uses analogical terminology that
comes from threads—but since Lwt does not actually implement threads, that terminology is not necessarily helpful. (We
don’t mean to demean Lwt! It is a library that has been developing and changing over time.)
The Lwt interface includes the following declarations, which we have annotated with comments to compare them to the
interface we implemented above:

module type Lwt = sig
(* [Sleep] means pending. [Return] means fulfilled.

[Fail] means rejected. *)
type 'a state = Sleep | Return of 'a | Fail of exn

(* a [t] is a promise *)
type 'a t

(* a [u] is a resolver *)
type 'a u

val state : 'a t -> 'a state

(* [wakeup_later] means [fulfill] *)
val wakeup_later : 'a u -> 'a -> unit

(* [wakeup_later_exn] means [reject] *)
val wakeup_later_exn : 'a u -> exn -> unit

(* [wait] means [make] *)
val wait : unit -> 'a t * 'a u

val return : 'a -> 'a t
end

module type Lwt =
sig

(continues on next page)
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type 'a state = Sleep | Return of 'a | Fail of exn
type 'a t
type 'a u
val state : 'a t -> 'a state
val wakeup_later : 'a u -> 'a -> unit
val wakeup_later_exn : 'a u -> exn -> unit
val wait : unit -> 'a t * 'a u
val return : 'a -> 'a t

end

Lwt’s implementation of that interface is much more complex than our own implementation above, because Lwt actually
supports many more operations on promises. Nonetheless, the core ideas that we developed above provide sound intuition
for what Lwt implements.
Here is some example Lwt code that you can try out in utop:

#require "lwt";;

let p, r = Lwt.wait();;

val p : '_weak1 Lwt.t = <abstr>
val r : '_weak1 Lwt.u = <abstr>

To avoid those weak type variables, we can provide a further hint to OCaml as to what type we want to eventually put
into the promise. For example, if we wanted to have a promise that will eventually contain an int, we could write this
code:

let (p : int Lwt.t), r = Lwt.wait ()

val p : int Lwt.t = <abstr>
val r : int Lwt.u = <abstr>

Now we can resolve the promise:

Lwt.state p

- : int Lwt.state = Lwt.Sleep

Lwt.wakeup_later r 42

- : unit = ()

Lwt.state p;;

- : int Lwt.state = Lwt.Return 42

Lwt.wakeup_later r 42
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Exception: Invalid_argument "Lwt.wakeup_later".
Raised at Stdlib.invalid_arg in file "stdlib.ml", line 30, characters 20-45
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

That last exception was raised because we attempted to resolve the promise a second time, which is not permitted.
To reject a promise, we can write similar code:

let (p : int Lwt.t), r = Lwt.wait ();;
Lwt.wakeup_later_exn r (Failure "nope");;
Lwt.state p;;

val p : int Lwt.t = <abstr>
val r : int Lwt.u = <abstr>

- : unit = ()

- : int Lwt.state = Lwt.Fail (Failure "nope")

Note that nothing we have implemented so far does anything concurrently. The promise abstraction by itself is not
inherently concurrent. It’s just a data structure that can be written at most once, and that provides a means to control who
can write to it (through the resolver).

10.7.6 Asynchronous I/O

Now that we understand promises as a data abstraction, let’s turn to how they can be used for concurrency. The typical
way they’re used with Lwt is for concurrent input and output (I/O).
The I/O functions that are part of the OCaml standard library are synchronous aka blocking: when you call such a function,
it does not return until the I/O has been completed. “Synchronous” here refers to the synchronization between your code
and the I/O function: your code does not get to execute again until the I/O code is done. “Blocking” refers to the fact that
your code has to wait—it is blocked—until the I/O completes.
For example, the Stdlib.input_line : in_channel -> string function reads characters from an input
channel until it reaches a newline character, then returns the characters it read. The type in_channel is abstract; it
represents a source of data that can be read, such as a file, or the network, or the keyboard. The value Stdlib.stdin :
in_channel represents the standard input channel, which is the channel which usually, by default, provides keyboard
input.
If you run the following code in utop, you will observe the blocking behavior:

# ignore(input_line stdin); print_endline "done";;
<type your own input here>
done
- : unit = ()

The string "done" is not printed until after the input operation completes, which happens after you type Enter.
Synchronous I/Omakes it impossible for a program to carry on other computations while it is waiting for the I/O operation
to complete. For some programs that’s just fine. A text adventure game, for example, doesn’t have any background
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computations it needs to perform. But other programs, like spreadsheets or servers, would be improved by being able to
carry on computations in the background rather than having to completely block while waiting for input.
Asynchronous aka non-blocking I/O is the opposite style of I/O. Asynchronous I/O operations return immediately, re-
gardless of whether the input or output has been completed. That enables a program to launch an I/O operation, carry on
doing other computations, and later come back to make use of the completed operation.
The Lwt library provides its own I/O functions in the Lwt_iomodule, which is in the lwt.unix package. The function
Lwt_io.read_line : Lwt_io.input_channel -> string Lwt.t is the asynchronous equivalent of
Stdlib.input_line. Similarly, Lwt_io.input_channel is the equivalent of the OCaml standard library’s
in_channel, and Lwt_io.stdin represents the standard input channel.
Run this code in utop to observe the non-blocking behavior:

# #require "lwt.unix";;
# open Lwt_io;;
# ignore(read_line stdin); printl "done";;
done
- : unit = ()
# <type your own input here>

The string "done" is printed immediately by Lwt_io.printl, which is Lwt’s equivalent of Stdlib.
print_endline, before you even type. Note that it’s best to use just one library’s I/O functions, rather than mix
them together.
When you do type your input, you don’t see it echoed to the screen, because it’s happening in the background. Utop is
still executing—it is not blocked—but your input is being sent to that read_line function instead of to utop. When
you finally type Enter, the input operation completes, and you are back to interacting with utop.
Now imagine that instead of reading a line asynchronously, the program was a web server reading a file to be served to a
client. And instead of printing a string, the server was delivering the contents of a different file that had completed reading
to a different client. That’s why asynchronous I/O can be so useful: it helps to hide latency. Here, “latency” means waiting
for data to be transferred from one place to another, e.g., from disk to memory. Latency hiding is an excellent use for
concurrency.
Note that all the concurrency here is really coming from the operating system, which is what provides the underlying
asynchronous I/O infrastructure. Lwt is just exposing that infrastructure to you through a library.

10.7.7 Promises and Asynchronous I/O

The output type of Lwt_io.read_line is string Lwt.t, meaning that the function returns a string promise.
Let’s investigate how the state of that promise evolves.
When the promise is returned from read_line, it is pending:

# let p = read_line stdin in Lwt.state p;;
- : string Lwt.state = Lwt.Sleep
# <now you have to type input and Enter to regain control of utop>

When the Enter key is pressed and input is completed, the promise returned from read_line should become fulfilled.
For example, suppose you enter “Camels are bae”:

# let p = read_line stdin;;
val p : string Lwt.t = <abstr>
<now you type Camels are bae followed by Enter>
# p;;
- : string = "Camels are bae"
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But, if you study that output carefully, you’ll notice something very strange just happened! After the let statement, p
had type string Lwt.t, as expected. But when we evaluated p, it came back as type string. It’s as if the promise
disappeared.
What’s actually happening is that utop has some special—and potentially confusing—functionality built into it that is
related to Lwt. Specifically, whenever you try to directly evaluate a promise at the top level, utop will give you the contents
of the promise, rather than the promise itself, and if the promise is not yet resolved, utop will block until the promise becomes
resolved so that the contents can be returned.

So the output - : string = "Camels are bae" really means that p contains a fulfilled string whose value
is "Camels are bae", not that p itself is a string. Indeed, the #show_val directive will show us that p is a
promise:

# #show_val p;;
val p : string Lwt.t

To disable that feature of utop, or to re-enable it, call the function UTop.set_auto_run_lwt : bool -> unit,
which changes how utop evaluates Lwt promises at the top level. You can see the behavior change in the following code:

# UTop.set_auto_run_lwt false;;
- : unit = ()
<now you type Camels are bae followed by Enter>
# p;;
- : string Lwt.state = <abstr>
# Lwt.state p;;
- : string Lwt.state = Lwt.Return "Camels are bae"

If you re-enable this “auto run” feature, and directly try to evaluate the promise returned by read_line, you’ll see that
it behaves exactly like synchronous I/O, i.e., Stdlib.input_line:

# UTop.set_auto_run_lwt true;;
- : unit = ()
# read_line stdin;;
Camels are bae
- : string = "Camels are bae"

Because of the potential confusion, we will henceforth assume that auto running is disabled. A good way to make that
happen is to put the following line in your .ocamlinit file:

UTop.set_auto_run_lwt false;;

10.7.8 Callbacks

For a program to benefit from the concurrency provided by asynchronous I/O and promises, there needs to be a way
for the program to make use of resolved promises. For example, if a web server is asynchronously reading and serving
multiple files to multiple clients, the server needs a way to (i) become aware that a read has completed, and (ii) then do
a new asynchronous write with the result of the read. In other words, programs need a mechanism for managing the
dependencies among promises.
The mechanism provided in Lwt is named callbacks. A callback is a function that will be run sometime after a promise
has been fulfilled, and it will receive as input the contents of the fulfilled promise. Think of it like asking your friend to
do some work for you: they promise to do it, and to call you back on the phone with the result of the work sometime after
they’ve finished.
Registering a callback. Here is a function that prints a string using Lwt’s version of the printf function:
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let print_the_string str = Lwt_io.printf "The string is: %S\n" str

And here, repeated from the previous section, is our code that returns a promise for a string read from standard input:

let p = read_line stdin

To register the printing function as a callback for that promise, we use the function Lwt.bind, which binds the callback
to the promise:

Lwt.bind p print_the_string

Sometime after p is fulfilled, hence contains a string, the callback function will be run with that string as its input. That
causes the string to be printed.
Here’s a complete utop transcript as an example of that:

# let print_the_string str = Lwt_io.printf "The string is: %S\n" str;;
val print_the_string : string -> unit Lwt.t = <fun>
# let p = read_line stdin in Lwt.bind p print_the_string;;
- : unit Lwt.t = <abstr>

<type Camels are bae followed by Enter>
# The string is: "Camels are bae"

Bind. The type of Lwt.bind is important to understand:

'a Lwt.t -> ('a -> 'b Lwt.t) -> 'b Lwt.t

The bind function takes a promise as its first argument. It doesn’t matter whether that promise has been resolved yet or
not. As its second argument, bind takes a callback function. That callback takes an input which is the same type 'a
as the contents of the promise. It’s not an accident that they have the same type: the whole idea is to eventually run the
callback on the fulfilled promise, so the type the promise contains needs to be the same as the type the callback expects
as input.
After being invoked on a promise and callback, e.g., bind p c, the bind function does one of three things, depending
on the state of p:

• If p is already fulfilled, then c is run immediately on the contents of p. The promise that is returned might or might
not be pending, depending on what c does.

• If p is already rejected, then c does not run. The promise that is returned is also rejected, with the same exception
as p.

• If p is pending, then bind does not wait for p to be resolved, nor for c to be run. Rather, bind just registers
the callback to eventually be run when (or if) the promise is fulfilled. Therefore, the bind function returns a new
promise. That promise will become fulfilled when (or if) the callback completes running, sometime in the future.
Its contents will be whatever contents are contained within the promise that the callback itself returns.

Note: For the first case above: The Lwt source code claims that this behavior might change: under high load, cmight be
registered to run later. But as of v5.5.0 that behavior has not yet been activated. So, don’t worry about it—this paragraph
is just here to future-proof this discussion.

Let’s consider that final case in more detail. We have one promise of type 'a Lwt.t and two promises of type 'b
Lwt.t:

• The promise of type 'a Lwt.t, call it promise X, is an input to bind. It was pending when bind was called,
and when bind returns.
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• The first promise of type 'b Lwt.t, call it promise Y, is created by bind and returned to the user. It is pending
at that point.

• The second promise of type 'b Lwt.t, call it promise Z, has not yet been created. It will be created later, when
promise X has been fulfilled, and the callback has been run on the contents of X. The callback then returns promise
Z. There is no guarantee about the state of Z; it might well still be pending when returned by the callback.

• When Z is finally fulfilled, the contents of Y are updated to be the same as the contents of Z.
The reason why bind is designed with this type is so that programmers can set up a sequential chain of callbacks. For
example, the following code asynchronously reads one string; then when that string has been read, proceeds to asyn-
chronously read a second string; then prints the concatenation of both strings:

Lwt.bind (read_line stdin) (fun s1 ->
Lwt.bind (read_line stdin) (fun s2 ->
Lwt_io.printf "%s\n" (s1^s2)));;

If you run that in utop, something slightly confusing will happen again: after you press Enter at the end of the first
string, Lwt will allow utop to read one character. The problem is that we’re mixing Lwt input operations with utop input
operations. It would be better to just create a program and run it from the command line.
To do that, put the following code in a file called read2.ml:

open Lwt_io

let p =
Lwt.bind (read_line stdin) (fun s1 ->
Lwt.bind (read_line stdin) (fun s2 ->

Lwt_io.printf "%s\n" (s1^s2)))

let _ = Lwt_main.run p

We’ve added one new function: Lwt_main.run : 'a Lwt.t -> 'a. It waits for its input promise to be fulfilled,
then returns the contents. This function is called only once in an entire program, near the end of the main file; and the
input to it is typically a promise whose resolution indicates that all execution is finished.
Create a dune file:

(executable
(name read2)
(libraries lwt.unix))

And run the program, entering a couple strings:

dune exec ./read2.exe
My first string
My second string
My first stringMy second string

Now try removing the last line of read2.ml. You’ll see that the program exits immediately, without waiting for you to
type.
Bind as an Operator. There is another syntax for bind that is used far more frequently than what we have seen so far.
The Lwt.Infix module defines an infix operator written >>= that is the same as bind. That is, instead of writing
bind p c you write p >>= c. This operator makes it much easier to write code without all the extra parentheses and
indentations that our previous example had:
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open Lwt_io
open Lwt.Infix

let p =
read_line stdin >>= fun s1 ->
read_line stdin >>= fun s2 ->
Lwt_io.printf "%s\n" (s1^s2)

let _ = Lwt_main.run p

The way to visually parse the definition of p is to look at each line as computing some promised value. The first line,
read_line stdin >>= fun s1 ->means that a promise is created, fulfilled, and its contents extracted under the
name s1. The second line means the same, except that its contents are named s2. The third line creates a final promise
whose contents are eventually extracted by Lwt_main.run, at which point the program may terminate.
The >>= operator is perhaps most famous from the functional language Haskell, which uses it extensively for monads.
We’ll cover monads in a later section.
Bind as Let Syntax. There is a syntax extension for OCaml that makes using bind even simpler than the infix operator
>>=. To install the syntax extension, run the following command:
$ opam install lwt_ppx

(You might need to opam update followed by opam upgrade first.)
With that extension, you can use a specialized let expression written let%lwt x = e1 in e2, which is equivalent
to bind e1 (fun x -> e2) or e1 >>= fun x -> e2. We can rewrite our running example as follows:

(* to compile, add lwt_ppx to the libraries in the dune file *)
open Lwt_io

let p =
let%lwt s1 = read_line stdin in
let%lwt s2 = read_line stdin in
Lwt_io.printf "%s\n" (s1^s2)

let _ = Lwt_main.run p

Now the code looks pretty much exactly like what its equivalent synchronous version would be. But don’t be fooled: all
the asynchronous I/O, the promises, and the callbacks are still there. Thus, the evaluation of p first registers a callback
with a promise, then moves on to the evaluation of Lwt_main.run without waiting for the first string to finish being
read. To prove that to yourself, run the following code:

open Lwt_io

let p =
let%lwt s1 = read_line stdin in
let%lwt s2 = read_line stdin in
Lwt_io.printf "%s\n" (s1^s2)

let _ = Lwt_io.printf "Got here first\n"

let _ = Lwt_main.run p

You’ll see that “Got here first” prints before you get a chance to enter any input.
Concurrent Composition. TheLwt.bind function provides a way to sequentially compose callbacks: first one callback
is run, then another, then another, and so forth. There are other functions in the library for composition of many callbacks
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as a set. For example,
• Lwt.join : unit Lwt.t list -> unit Lwt.t enables waiting upon multiple promises. Lwt.join
ps returns a promise that is pending until all the promises in ps become resolved. You might register a callback
on the return promise from the join to take care of some computation that needs all of a set of promises to be
finished.

• Lwt.pick : 'a Lwt.t list -> 'a Lwt.t also enables waiting upon multiple promises, but Lwt.
pick ps returns a promise that is pending until at least one promise in ps becomes resolved. You might register
a callback on the return promise from the pick to take care of some computation that needs just one of a set of
promises to be finished, but doesn’t care which one.

10.7.9 Implementing Callbacks

When a callback is registered with bind or one of the other syntaxes, it is added to a list of callbacks that is stored with
the promise. Eventually, when the promise has been fulfilled, the Lwt resolution loop runs the callbacks registered for
the promise. There is no guarantee about the execution order of callbacks for a promise. In other words, the execution
order is nondeterministic. If the order matters, the programmer needs to use the composition operators (such as bind
and join) to enforce an ordering. If the promise never becomes fulfilled (or is rejected), none of its callbacks will ever
be run.

Note: Lwt also supports registering functions that are run after a promise is rejected. Lwt.catch and try%lwt are
used for this purpose. They are counterparts to Lwt.bind and let%lwt.

Once again, it’s important to keep track of where the concurrency really comes from: the OS. There might be many
asynchronous I/O operations occurring at the OS level. But at the OCaml level, the resolution loop is sequential, meaning
that only one callback can ever be running at a time.
Finally, the resolution loop never attempts to interrupt a callback. So if the callback goes into an infinite loop, no other
callback will ever get to run. That makes Lwt a cooperative concurrency mechanism, rather than preemptive.
To better understand callback resolution, let’s implement it ourselves. We’ll use thePromise data structure we developed
earlier. To start, we add a bind operator to the Promise signature:

module type PROMISE = sig
...

(** [p >>= c] registers callback [c] with promise [p].
When the promise is fulfilled, the callback will be run
on the promises's contents. If the promise is never
fulfilled, the callback will never run. *)

val ( >>= ) : 'a promise -> ('a -> 'b promise) -> 'b promise
end

Next, let’s re-develop the entire Promise structure. We start off just like before:

module Promise : PROMISE = struct
type 'a state = Pending | Fulfilled of 'a | Rejected of exn
...

But now to implement the representation type of promises, we use a record with mutable fields. The first field is the state
of the promise, and it corresponds to the refwe used before. The second field is more interesting and is discussed below.
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(** RI: the input may not be [Pending]. *)
type 'a handler = 'a state -> unit

(** RI: if [state <> Pending] then [handlers = []]. *)
type 'a promise = {
mutable state : 'a state;
mutable handlers : 'a handler list

}

A handler is a new abstraction: a function that takes a non-pending state. It will be used to fulfill and reject promises
when their state is ready to switch away from pending. The primary use for a handler will be to run callbacks. As a
representation invariant, we require that only pending promises may have handlers waiting in their list. Once the state
becomes non-pending, i.e., either fulfilled or rejected, the handlers will all be processed and removed from the list.
This helper function that enqueues a handler on a promise’s handler list will be helpful later:

let enqueue
(handler : 'a state -> unit)
(promise : 'a promise) : unit

=
promise.handlers <- handler :: promise.handlers

We continue to pun resolvers and promises internally:

type 'a resolver = 'a promise

Because we changed the representation type from a ref to a record, we have to update a few of the functions in trivial
ways:

(** [write_once p s] changes the state of [p] to be [s]. If [p] and [s]
are both pending, that has no effect.
Raises: [Invalid_arg] if the state of [p] is not pending. *)

let write_once p s =
if p.state = Pending
then p.state <- s
else invalid_arg "cannot write twice"

let make () =
let p = {state = Pending; handlers = []} in
p, p

let return x =
{state = Fulfilled x; handlers = []}

let state p = p.state

Now we get to the trickier parts of the implementation. To fulfill or reject a promise, the first thing we need to do is to
call write_once on it, as we did before. Now we also need to process the handlers. Before doing so, we mutate the
handlers list to be empty to ensure that the RI holds.

(** Requires: [st] may not be [Pending]. *)
let fulfill_or_reject (r : 'a resolver) (st : 'a state) =
assert (st <> Pending);
let handlers = r.handlers in
r.handlers <- [];

(continues on next page)
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(continued from previous page)

write_once r st;
List.iter (fun f -> f st) handlers

let reject r x =
fulfill_or_reject r (Rejected x)

let fulfill r x =
fulfill_or_reject r (Fulfilled x)

Finally, the implementation of >>= is the trickiest part. First, if the promise is already fulfilled, let’s go ahead and
immediately run the callback on it:

let ( >>= )
(input_promise : 'a promise)
(callback : 'a -> 'b promise) : 'b promise

=
match input_promise.state with
| Fulfilled x -> callback x

Second, if the promise is already rejected, then we return a promise that is rejected with the same exception:

| Rejected exc -> {state = Rejected exc; handlers = []}

Third, if the promise is pending, we need to do more work. The bind function needs to return a new promise. That
promise will become fulfilled when (or if) the callback completes running, sometime in the future. Its contents will be
whatever contents are contained within the promise that the callback itself returns.
So, we create a new promise and resolver called output_promise and output_resolver. That promise is what
bind returns. Before returning it, we use a helper function handler_of_callback (described below) to transform
the callback into a handler, and enqueue that handler on the promise. That ensures the handler will be run when the
promise later becomes resolved:

| Pending ->
let output_promise, output_resolver = make () in
enqueue (handler_of_callback callback output_resolver) input_promise;
output_promise

All that’s left is to implement that helper function to create handlers from callbacks. The first two cases, below, are simple.
It would violate the RI to call a handler on a pending state. And if the state is rejected, then the handler should propagate
that rejection to the resolver, which causes the promise returned by bind to also be rejected.

let handler_of_callback
(callback : 'a -> 'b promise)
(resolver : 'b resolver) : 'a handler

= function
| Pending -> failwith "handler RI violated"
| Rejected exc -> reject resolver exc

But if the state is fulfiled, then the callback provided by the user to bind can—at last!—be run on the contents of the
fulfilled promise. If the callback executes successfully it produces a new promise, but the callback may itself raise an
exception.
First, consider the optimistic case in which the callback executes successfully and produces a promise. That promise
might already be rejected or fulfilled, in which case that state again propagates.
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| Fulfilled x ->
let promise = callback x in
match promise.state with
| Fulfilled y -> resolve resolver y
| Rejected exc -> reject resolver exc

But the promise might still be pending. In that case, we need to enqueue a new handler whose purpose is to do the
propagation once the result is available:

| Pending -> enqueue (handler resolver) promise

where handler is a new helper function that creates a very simple handler to do that propagation:

let handler (resolver : 'a resolver) : 'a handler
= function

| Pending -> failwith "handler RI violated"
| Rejected exc -> reject resolver exc
| Fulfilled x -> resolve resolver x

Second, consider the case in which the callback function itself raises some exception exc. In that case, we need to reject
the promise with that exception. We do this by wrapping the execution of the callback in a try block:

| Fulfilled x ->
try
let promise = callback x in
match promise.state with
| Fulfilled y -> resolve resolver y
| Rejected exc -> reject resolver exc
| Pending -> enqueue (handler resolver) promise

with exc -> reject resolver exc

The Lwt implementation of bind follows essentially the same algorithm as we just implemented. Note that there is no
concurrency in bind: as we said above, it’s the OS that provides the concurrency.

10.7.10 The Full Implementation

Here’s all of that code in one executable block:

(** A signature for Lwt-style promises, with better names. *)
module type PROMISE = sig
type 'a state =

| Pending
| Fulfilled of 'a
| Rejected of exn

type 'a promise

type 'a resolver

(** [make ()] is a new promise and resolver. The promise is pending. *)
val make : unit -> 'a promise * 'a resolver

(** [return x] is a new promise that is already fulfilled with value
[x]. *)

(continues on next page)
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val return : 'a -> 'a promise

(** [state p] is the state of the promise. *)
val state : 'a promise -> 'a state

(** [fulfill r x] resolves the promise [p] associated with [r] with
value [x], meaning that [state p] will become [Fulfilled x].
Requires: [p] is pending. *)

val fulfill : 'a resolver -> 'a -> unit

(** [reject r x] rejects the promise [p] associated with [r] with
exception [x], meaning that [state p] will become [Rejected x].
Requires: [p] is pending. *)

val reject : 'a resolver -> exn -> unit

(** [p >>= c] registers callback [c] with promise [p].
When the promise is fulfilled, the callback will be run
on the promises's contents. If the promise is never
fulfilled, the callback will never run. *)

val ( >>= ) : 'a promise -> ('a -> 'b promise) -> 'b promise
end

module Promise : PROMISE = struct
type 'a state = Pending | Fulfilled of 'a | Rejected of exn

(** RI: the input may not be [Pending]. *)
type 'a handler = 'a state -> unit

(** RI: if [state <> Pending] then [handlers = []]. *)
type 'a promise = {

mutable state : 'a state;
mutable handlers : 'a handler list

}

let enqueue
(handler : 'a state -> unit)
(promise : 'a promise) : unit

=
promise.handlers <- handler :: promise.handlers

type 'a resolver = 'a promise

(** [write_once p s] changes the state of [p] to be [s]. If [p] and [s]
are both pending, that has no effect.
Raises: [Invalid_arg] if the state of [p] is not pending. *)

let write_once p s =
if p.state = Pending
then p.state <- s
else invalid_arg "cannot write twice"

let make () =
let p = {state = Pending; handlers = []} in
p, p

let return x =
{state = Fulfilled x; handlers = []}

(continues on next page)
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let state p = p.state

(** Requires: [st] may not be [Pending]. *)
let fulfill_or_reject (r : 'a resolver) (st : 'a state) =

assert (st <> Pending);
let handlers = r.handlers in
r.handlers <- [];
write_once r st;
List.iter (fun f -> f st) handlers

let reject r x =
fulfill_or_reject r (Rejected x)

let fulfill r x =
fulfill_or_reject r (Fulfilled x)

let handler (resolver : 'a resolver) : 'a handler
= function
| Pending -> failwith "handler RI violated"
| Rejected exc -> reject resolver exc
| Fulfilled x -> fulfill resolver x

let handler_of_callback
(callback : 'a -> 'b promise)
(resolver : 'b resolver) : 'a handler

= function
| Pending -> failwith "handler RI violated"
| Rejected exc -> reject resolver exc
| Fulfilled x ->

try
let promise = callback x in
match promise.state with
| Fulfilled y -> fulfill resolver y
| Rejected exc -> reject resolver exc
| Pending -> enqueue (handler resolver) promise

with exc -> reject resolver exc

let ( >>= )
(input_promise : 'a promise)
(callback : 'a -> 'b promise) : 'b promise

=
match input_promise.state with
| Fulfilled x -> callback x
| Rejected exc -> {state = Rejected exc; handlers = []}
| Pending ->
let output_promise, output_resolver = make () in
enqueue (handler_of_callback callback output_resolver) input_promise;
output_promise

end

module type PROMISE =
sig

type 'a state = Pending | Fulfilled of 'a | Rejected of exn
type 'a promise

(continues on next page)
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type 'a resolver
val make : unit -> 'a promise * 'a resolver
val return : 'a -> 'a promise
val state : 'a promise -> 'a state
val fulfill : 'a resolver -> 'a -> unit
val reject : 'a resolver -> exn -> unit
val ( >>= ) : 'a promise -> ('a -> 'b promise) -> 'b promise

end

module Promise : PROMISE

10.8 Monads

A monad is more of a design pattern than a data structure. That is, there are many data structures that, if you look at
them in the right way, turn out to be monads.
The name “monad” comes from the mathematical field of category theory, which studies abstractions of mathematical
structures. If you ever take a PhD level class on programming language theory, you will likely encounter that idea in more
detail. Here, though, we will omit most of the mathematical theory and concentrate on code.
Monads became popular in the programming world through their use in Haskell, a functional programming language that
is even more pure than OCaml—that is, Haskell avoids side effects and imperative features even more than OCaml. But
no practical language can do without side effects. After all, printing to the screen is a side effect. So Haskell set out to
control the use of side effects through the monad design pattern. Since then, monads have become recognized as useful
in other functional programming languages, and are even starting to appear in imperative languages.
Monads are used to model computations. Think of a computation as being like a function, which maps an input to an
output, but as also doing “something more.” The something more is an effect that the function has as a result of being
computed. For example, the effect might involve printing to the screen. Monads provide an abstraction of effects, and
help to make sure that effects happen in a controlled order.

10.8.1 The Monad Signature

For our purposes, a monad is a structure that satisfies two properties. First, it must match the following signature:

module type Monad = sig
type 'a t
val return : 'a -> 'a t
val bind : 'a t -> ('a -> 'b t) -> 'b t

end

Second, a monad must obey what are called the monad laws. We will return to those much later, after we have studied
the return and bind operations.
Think of a monad as being like a box that contains some value. The value has type 'a, and the box that contains it is
of type 'a t. We have previously used a similar box metaphor for both options and promises. That was no accident:
options and promises are both examples of monads, as we will see in detail, below.
Return. The return operation metaphorically puts a value into a box. You can see that in its type: the input is of type
'a, and the output is of type 'a t.
In terms of computations, return is intended to have some kind of trivial effect. For example, if the monad represents
computations whose side effect is printing to the screen, the trivial effect would be to not print anything.

408 Chapter 10. Data Structures



OCaml Programming: Correct + Efficient + Beautiful

Bind. The bind operation metaphorically takes as input:
• a boxed value, which has type 'a t, and
• a function that itself takes an unboxed value of type 'a as input and returns a boxed value of type 'b t as output.

The bind applies its second argument to the first. That requires taking the 'a value out of its box, applying the function
to it, and returning the result.
In terms of computations, bind is intended to sequence effects one after another. Continuing the running example of
printing, sequencing would mean first printing one string, then another, and bind would be making sure that the printing
happens in the correct order.
The usual notation for bind is as an infix operator written >>= and still pronounced “bind”. So let’s revise our signature
for monads:

module type Monad = sig
type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t

end

All of the above is likely to feel very abstract upon first reading. It will help to see some concrete examples of monads.
Once you understand several >>= and return operations, the design pattern itself should make more sense.
So the next few sections look at several different examples of code in which monads can be discovered. Because monads
are a design pattern, they aren’t always obvious; it can take some study to tease out where the monad operations are being
used.

10.8.2 The Maybe Monad

As we’ve seen before, sometimes functions are partial: there is no good output they can produce for some inputs. For
example, the function max_list : int list -> int doesn’t necessarily have a good output value to return
for the empty list. One possibility is to raise an exception. Another possibility is to change the return type to be int
option, and use None to represent the function’s inability to produce an output. In other words, maybe the function
produces an output, or maybe it is unable to do so hence returns None.
As another example, consider the built-in OCaml integer division function ( / ) : int -> int -> int. If its
second argument is zero, it raises an exception. Another possibility, though, would be to change its type to be ( / ) :
int -> int -> int option, and return None whenever the divisor is zero.
Both of those examples involved changing the output type of a partial function to be an option, thus making the function
total. That’s a nice way to program, until you start trying to combine many functions together. For example, because all
the integer operations—addition, subtraction, division, multiplication, negation, etc.—expect an int (or two) as input,
you can form large expressions out of them. But as soon as you change the output type of division to be an option, you
lose that compositionality.
Here’s some code to make that idea concrete:

(* works fine *)
let x = 1 + (4 / 2)

val x : int = 3

let div (x:int) (y:int) : int option =
if y = 0 then None else Some (x / y)

(continues on next page)
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let ( / ) = div

(* won't type check *)
let x = 1 + (4 / 2)

val div : int -> int -> int option = <fun>

val ( / ) : int -> int -> int option = <fun>

File "[4]", line 7, characters 12-19:
7 | let x = 1 + (4 / 2)

^^^^^^^
Error: This expression has type int option

but an expression was expected of type int

The problem is that we can’t add an int to an int option: the addition operator expects its second input to be of
type int, but the new division operator returns a value of type int option.
One possibility would be to re-code all the existing operators to accept int option as input. For example,

let plus_opt (x:int option) (y:int option) : int option =
match x,y with
| None, _ | _, None -> None
| Some a, Some b -> Some (Stdlib.( + ) a b)

let ( + ) = plus_opt

let minus_opt (x:int option) (y:int option) : int option =
match x,y with
| None, _ | _, None -> None
| Some a, Some b -> Some (Stdlib.( - ) a b)

let ( - ) = minus_opt

let mult_opt (x:int option) (y:int option) : int option =
match x,y with
| None, _ | _, None -> None
| Some a, Some b -> Some (Stdlib.( * ) a b)

let ( * ) = mult_opt

let div_opt (x:int option) (y:int option) : int option =
match x,y with
| None, _ | _, None -> None
| Some a, Some b ->

if b=0 then None else Some (Stdlib.( / ) a b)

let ( / ) = div_opt

(* does type check *)
let x = Some 1 + (Some 4 / Some 2)
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val x : int option = Some 3

But that’s a tremendous amount of code duplication. We ought to apply the Abstraction Principle and deduplicate. Three
of the four operators can be handled by abstracting a function that just does some pattern matching to propagate None:

let propagate_none (op : int -> int -> int) (x : int option) (y : int option) =
match x, y with
| None, _ | _, None -> None
| Some a, Some b -> Some (op a b)

let ( + ) = propagate_none Stdlib.( + )
let ( - ) = propagate_none Stdlib.( - )
let ( * ) = propagate_none Stdlib.( * )

val propagate_none :
(int -> int -> int) -> int option -> int option -> int option = <fun>

val ( + ) : int option -> int option -> int option = <fun>

val ( - ) : int option -> int option -> int option = <fun>

val ( * ) : int option -> int option -> int option = <fun>

Unfortunately, division is harder to deduplicate. We can’t just pass Stdlib.( / ) to propagate_none, because
neither of those functions will check to see whether the divisor is zero. It would be nice if we could pass our function div
: int -> int -> int option to propagate_none, but the return type of div makes that impossible.
So, let’s rewrite propagate_none to accept an operator of the same type as div, which makes it easy to implement
division:

let propagate_none
(op : int -> int -> int option) (x : int option) (y : int option)

=
match x, y with
| None, _ | _, None -> None
| Some a, Some b -> op a b

let ( / ) = propagate_none div

val propagate_none :
(int -> int -> int option) -> int option -> int option -> int option =
<fun>

val ( / ) : int option -> int option -> int option = <fun>

Implementing the other three operations requires a little more work, because their return type is int not int option.
We need to wrap their return value with Some:

let wrap_output (op : int -> int -> int) (x : int) (y : int) : int option =
Some (op x y)

(continues on next page)
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let ( + ) = propagate_none (wrap_output Stdlib.( + ))
let ( - ) = propagate_none (wrap_output Stdlib.( - ))
let ( * ) = propagate_none (wrap_output Stdlib.( * ))

val wrap_output : (int -> int -> int) -> int -> int -> int option = <fun>

val ( + ) : int option -> int option -> int option = <fun>

val ( - ) : int option -> int option -> int option = <fun>

val ( * ) : int option -> int option -> int option = <fun>

Finally, we could re-implement div to use wrap_output:

let div (x : int) (y : int) : int option =
if y = 0 then None else wrap_output Stdlib.( / ) x y

let ( / ) = propagate_none div

val div : int -> int -> int option = <fun>

val ( / ) : int option -> int option -> int option = <fun>

Where’s theMonad? The work we just did was to take functions on integers and transform them into functions on values
that maybe are integers, but maybe are not—that is, values that are either Some i where i is an integer, or are None.
We can think of these “upgraded” functions as computations that may have the effect of producing nothing. They produce
metaphorical boxes, and those boxes may be full of something, or contain nothing.
There were two fundamental ideas in the code we just wrote, which correspond to the monad operations of return and
bind.
The first (which admittedly seems trivial) was upgrading a value from int to int option by wrapping it with Some.
That’s what the body of wrap_output does. We could expose that idea even more clearly by defining the following
function:

let return (x : int) : int option = Some x

val return : int -> int option = <fun>

This function has the trivial effect of putting a value into the metaphorical box.
The second idea was factoring out code to handle all the pattern matching against None. We had to upgrade functions
whose inputs were of type int to instead accept inputs of type int option. Here’s that idea expressed as its own
function:

let bind (x : int option) (op : int -> int option) : int option =
match x with
| None -> None
| Some a -> op a

let ( >>= ) = bind
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val bind : int option -> (int -> int option) -> int option = <fun>

val ( >>= ) : int option -> (int -> int option) -> int option = <fun>

The bind function can be understood as doing the core work of upgrading op from a function that accepts an int as
input to a function that accepts an int option as input. In fact, we could even write a function that does that upgrading
for us using bind:

let upgrade : (int -> int option) -> (int option -> int option) =
fun (op : int -> int option) (x : int option) -> (x >>= op)

val upgrade : (int -> int option) -> int option -> int option = <fun>

All those type annotations are intended to help the reader understand the function. Of course, it could be written much
more simply as:

let upgrade op x = x >>= op

val upgrade : (int -> int option) -> int option -> int option = <fun>

Using just the return and >>= functions, we could re-implement the arithmetic operations from above:

let ( + ) (x : int option) (y : int option) : int option =
x >>= fun a ->
y >>= fun b ->
return (Stdlib.( + ) a b)

let ( - ) (x : int option) (y : int option) : int option =
x >>= fun a ->
y >>= fun b ->
return (Stdlib.( - ) a b)

let ( * ) (x : int option) (y : int option) : int option =
x >>= fun a ->
y >>= fun b ->
return (Stdlib.( * ) a b)

let ( / ) (x : int option) (y : int option) : int option =
x >>= fun a ->
y >>= fun b ->
if b = 0 then None else return (Stdlib.( / ) a b)

val ( + ) : int option -> int option -> int option = <fun>

val ( - ) : int option -> int option -> int option = <fun>

val ( * ) : int option -> int option -> int option = <fun>

val ( / ) : int option -> int option -> int option = <fun>

Recall, from our discussion of the bind operator in Lwt, that the syntax above should be parsed by your eye as
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• take x and extract from it the value a,
• then take y and extract from it b,
• then use a and b to construct a return value.

Of course, there’s still a fair amount of duplication going on there. We can de-duplicate by using the same techniques as
we did before:

let upgrade_binary op x y =
x >>= fun a ->
y >>= fun b ->
op a b

let return_binary op x y = return (op x y)

let ( + ) = upgrade_binary (return_binary Stdlib.( + ))
let ( - ) = upgrade_binary (return_binary Stdlib.( - ))
let ( * ) = upgrade_binary (return_binary Stdlib.( * ))
let ( / ) = upgrade_binary div

val upgrade_binary :
(int -> int -> int option) -> int option -> int option -> int option =
<fun>

val return_binary : ('a -> 'b -> int) -> 'a -> 'b -> int option = <fun>

val ( + ) : int option -> int option -> int option = <fun>

val ( - ) : int option -> int option -> int option = <fun>

val ( * ) : int option -> int option -> int option = <fun>

val ( / ) : int option -> int option -> int option = <fun>

The Maybe Monad. The monad we just discovered goes by several names: the maybe monad (as in, “maybe there’s a
value, maybe not”), the error monad (as in, “either there’s a value or an error”, and error is represented by None—though
some authors would want an error monad to be able to represent multiple kinds of errors rather than just collapse them
all to None), and the option monad (which is obvious).
Here’s an implementation of the monad signature for the maybe monad:

module Maybe : Monad = struct
type 'a t = 'a option

let return x = Some x

let (>>=) m f =
match m with
| None -> None
| Some x -> f x

end
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module Maybe : Monad

These are the same implementations of return and >>= as we invented above, but without the type annotations to force
them to work only on integers. Indeed, we never needed those annotations; they just helped make the code above a little
clearer.
In practice the return function here is quite trivial and not really necessary. But the >>= operator can be used to replace
a lot of boilerplate pattern matching, as we saw in the final implementation of the arithmetic operators above. There’s
just a single pattern match, which is inside of >>=. Compare that to the original implementations of plus_opt, etc.,
which had many pattern matches.
The result is we get code that (once you understand how to read the bind operator) is easier to read and easier to maintain.
Now that we’re done playing with integer operators, we should restore their original meaning for the rest of this file:

let ( + ) = Stdlib.( + )
let ( - ) = Stdlib.( - )
let ( * ) = Stdlib.( * )
let ( / ) = Stdlib.( / )

val ( + ) : int -> int -> int = <fun>

val ( - ) : int -> int -> int = <fun>

val ( * ) : int -> int -> int = <fun>

val ( / ) : int -> int -> int = <fun>

10.8.3 Example: The Writer Monad

When trying to diagnose faults in a system, it’s often the case that a log of what functions have been called, as well as what
their inputs and outputs were, would be helpful.
Imagine that we had two functions we wanted to debug, both of type int -> int. For example:

let inc x = x + 1
let dec x = x - 1

val inc : int -> int = <fun>

val dec : int -> int = <fun>

(Ok, those are really simple functions; we probably don’t need any help debugging them. But imagine they compute
something far more complicated, like encryptions or decryptions of integers.)
One way to keep a log of function calls would be to augment each function to return a pair: the integer value the function
would normally return, as well as a string containing a log message. For example:

let inc_log x = (x + 1, Printf.sprintf "Called inc on %i; " x)
let dec_log x = (x - 1, Printf.sprintf "Called dec on %i; " x)
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val inc_log : int -> int * string = <fun>

val dec_log : int -> int * string = <fun>

But that changes the return type of both functions, which makes it hard to compose the functions. Previously, we could
have written code such as

let id x = dec (inc x)

val id : int -> int = <fun>

or even better

let id x = x |> inc |> dec

val id : int -> int = <fun>

or even better still, using the composition operator >>,

let ( >> ) f g x = x |> f |> g
let id = inc >> dec

val ( >> ) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c = <fun>

val id : int -> int = <fun>

and that would have worked just fine. But trying to do the same thing with the loggable versions of the functions produces
a type-checking error:

let id = inc_log >> dec_log

File "[24]", line 1, characters 20-27:
1 | let id = inc_log >> dec_log

^^^^^^^
Error: This expression has type int -> int * string

but an expression was expected of type int * string -> 'a
Type int is not compatible with type int * string

That’s because inc_log x would be a pair, but dec_log expects simply an integer as input.
We could code up an upgraded version of dec_log that is able to take a pair as input:

let dec_log_upgraded (x, s) =
(x - 1, Printf.sprintf "%s; Called dec on %i; " s x)

let id x = x |> inc_log |> dec_log_upgraded

val dec_log_upgraded : int * string -> int * string = <fun>
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val id : int -> int * string = <fun>

That works fine, but we also will need to code up a similar upgraded version of f_log if we ever want to call them in
reverse order, e.g., let id = dec_log >> inc_log. So we have to write:

let inc_log_upgraded (x, s) =
(x + 1, Printf.sprintf "%s; Called inc on %i; " s x)

let id = dec_log >> inc_log_upgraded

val inc_log_upgraded : int * string -> int * string = <fun>

val id : int -> int * string = <fun>

And at this point we’ve duplicated far too much code. The implementations of inc and dec are duplicated inside both
inc_log and dec_log, as well as inside both upgraded versions of the functions. And both the upgrades duplicate the
code for concatenating log messages together. The more functions we want to make loggable, the worse this duplication
is going to become!
So, let’s start over, and factor out a couple helper functions. The first helper calls a function and produces a log message:

let log (name : string) (f : int -> int) : int -> int * string =
fun x -> (f x, Printf.sprintf "Called %s on %i; " name x)

val log : string -> (int -> int) -> int -> int * string = <fun>

The second helper produces a logging function of type 'a * string -> 'b * string out of a non-loggable
function:

let loggable (name : string) (f : int -> int) : int * string -> int * string =
fun (x, s1) ->

let (y, s2) = log name f x in
(y, s1 ^ s2)

val loggable : string -> (int -> int) -> int * string -> int * string = <fun>

Using those helpers, we can implement the logging versions of our functions without any duplication of code involving
pairs or pattern matching or string concatenation:

let inc' : int * string -> int * string =
loggable "inc" inc

let dec' : int * string -> int * string =
loggable "dec" dec

let id' : int * string -> int * string =
inc' >> dec'

val inc' : int * string -> int * string = <fun>
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val dec' : int * string -> int * string = <fun>

val id' : int * string -> int * string = <fun>

Here’s an example usage:

id' (5, "")

- : int * string = (5, "Called inc on 5; Called dec on 6; ")

Notice how it’s inconvenient to call our loggable functions on integers, since we have to pair the integer with a string. So
let’s write one more function to help with that by pairing an integer with the empty log:

let e x = (x, "")

val e : 'a -> 'a * string = <fun>

And now we can write id' (e 5) instead of id' (5, "").
Where’s the Monad? The work we just did was to take functions on integers and transform them into functions on
integers paired with log messages. We can think of these “upgraded” functions as computations that log. They produce
metaphorical boxes, and those boxes contain function outputs as well as log messages.
There were two fundamental ideas in the code we just wrote, which correspond to the monad operations of return and
bind.
The first was upgrading a value from int to int * string by pairing it with the empty string. That’s what e does.
We could rename it return:

let return (x : int) : int * string = (x, "")

val return : int -> int * string = <fun>

This function has the trivial effect of putting a value into the metaphorical box along with the empty log message.
The second idea was factoring out code to handle pattern matching against pairs and string concatenation. Here’s that
idea expressed as its own function:

let ( >>= ) (m : int * string) (f : int -> int * string) : int * string =
let (x, s1) = m in
let (y, s2) = f x in
(y, s1 ^ s2)

val ( >>= ) : int * string -> (int -> int * string) -> int * string = <fun>

Using >>=, we can re-implement loggable, such that no pairs or pattern matching are ever used in its body:

let loggable (name : string) (f : int -> int) : int * string -> int * string =
fun m ->

m >>= fun x ->
log name f x
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val loggable : string -> (int -> int) -> int * string -> int * string = <fun>

The Writer Monad. The monad we just discovered is usually called the writer monad (as in, “additionally writing to a
log or string”). Here’s an implementation of the monad signature for it:

module Writer : Monad = struct
type 'a t = 'a * string

let return x = (x, "")

let ( >>= ) m f =
let (x, s1) = m in
let (y, s2) = f x in
(y, s1 ^ s2)

end

module Writer : Monad

As we saw with the maybe monad, these are the same implementations of return and >>= as we invented above, but
without the type annotations to force them to work only on integers. Indeed, we never needed those annotations; they just
helped make the code above a little clearer.
It’s debatable which version of loggable is easier to read. Certainly you need to be comfortable with the monadic style
of programming to appreciate the version of it that uses >>=. But if you were developing a much larger code base (i.e.,
with more functions involving paired strings than just loggable), using the >>= operator is likely to be a good choice:
it means the code you write can concentrate on the 'a in the type 'a Writer.t instead of on the strings. In other
words, the writer monad will take care of the strings for you, as long as you use return and >>=.

10.8.4 Example: The Lwt Monad

By now, it’s probably obvious that the Lwt promises library that we discussed is also a monad. The type 'a Lwt.t of
promises has a return and bind operation of the right types to be a monad:

val return : 'a -> 'a t
val bind : 'a t -> ('a -> 'b t) -> 'b t

And Lwt.Infix.( >>= ) is a synonym for Lwt.bind, so the library does provide an infix bind operator.
Now we start to see some of the great power of the monad design pattern. The implementation of 'a t and return
that we saw before involves creating references, but those references are completely hidden behind the monadic interface.
Moreover, we know that bind involves registering callbacks, but that functionality (which as you might imagine involves
maintaining collections of callbacks) is entirely encapsulated.
Metaphorically, as we discussed before, the box involved here is one that starts out empty but eventually will be filled
with a value of type 'a. The “something more” in these computations is that values are being produced asynchronously,
rather than immediately.
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10.8.5 Monad Laws

Every data structure has not just a signature, but some expected behavior. For example, a stack has a push and a pop
operation, and we expect those operations to satisfy certain algebraic laws. We saw those for stacks when we studied
equational specification:

• peek (push x s) = x

• pop (push x s) = s

• etc.
A monad, though, is not just a single data structure. It’s a design pattern for data structures. So it’s impossible to write
specifications of return and >>= for monads in general: the specifications would need to discuss the particular monad,
like the writer monad or the Lwt monad.
On the other hand, it turns out that we can write down some laws that ought to hold of any monad. The reason for that goes
back to one of the intuitions we gave about monads, namely, that they represent computations that have effects. Consider
Lwt, for example. We might register a callback C on promise X with bind. That produces a new promise Y, on which
we could register another callback D. We expect a sequential ordering on those callbacks: C must run before D, because
Y cannot be resolved before X.
That notion of sequential order is part of what the monad laws stipulate. We will state those laws below. But first, let’s
pause to consider sequential order in imperative languages.
*Sequential Order. In languages like Java and C, there is a semicolon that imposes a sequential order on statements, e.g.:

System.out.println(x);
x++;
System.out.println(x);

Firstx is printed, then incremented, then printed again. The effects that those statements havemust occur in that sequential
order.
Let’s imagine a hypothetical statement that causes no effect whatsoever. For example, assert true causes nothing
to happen in Java. (Some compilers will completely ignore it and not even produce bytecode for it.) In most assembly
languages, there is likewise a “no op” instruction whose mnemonic is usually NOP that also causes nothing to happen.
(Technically, some clock cycles would elapse. But there wouldn’t be any changes to registers or memory.) In the theory
of programming languages, statements like this are usually called skip, as in, “skip over me because I don’t do anything
interesting.”
Here are two laws that should hold of skip and semicolon:

• skip; s; should behave the same as just s;.
• s; skip; should behave the same as just s;.

In other words, you can remove any occurrences of skip, because it has no effects. Mathematically, we say that skip
is a left identity (the first law) and a right identity (the second law) of semicolon.
Imperative languages also usually have a way of grouping statements together into blocks. In Java and C, this is usually
done with curly braces. Here is a law that should hold of blocks and semicolon:

• {s1; s2;} s3; should behave the same as s1; {s2; s3;}.
In other words, the order is always s1 then s2 then s3, regardless of whether you group the first two statements into a
block or the second two into a block. So you could even remove the braces and just write s1; s2; s3;, which is what
we normally do anyway. Mathematically, we say that semicolon is associative.
Sequential Order with the Monad Laws. The three laws above embody exactly the same intuition as the monad laws,
which we will now state. The monad laws are just a bit more abstract hence harder to understand at first.
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Suppose that we have any monad, which as usual must have the following signature:

module type Monad = sig
type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t

end

module type Monad =
sig

type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t

end

The three monad laws are as follows:
• Law 1: return x >>= f behaves the same as f x.
• Law 2: m >>= return behaves the same as m.
• Law 3: (m >>= f) >>= g behaves the same as m >>= (fun x -> f x >>= g).

Here, “behaves the same as” means that the two expressions will both evaluate to the same value, or they will both go into
an infinite loop, or they will both raise the same exception.
These laws are mathematically saying the same things as the laws for skip, semicolon, and braces that we saw above:
return is a left and right identity of >>=, and >>= is associative. Let’s look at each law in more detail.
Law 1 says that having the trivial effect on a value, then binding a function on it, is the same as just calling the function
on the value. Consider the maybe monad: return x would be Some x, and >>= f would extract x and apply f to it.
Or consider the Lwt monad: return x would be a promise that is already resolved with x, and >>= f would register
f as a callback to run on x.
Law 2 says that binding on the trivial effect is the same as just not having the effect. Consider the maybe monad: m >>=
return would depend upon whether m is Some x or None. In the former case, binding would extract x, and return
would just re-wrap it with Some. In the latter case, binding would just return None. Similarly, with Lwt, binding on
m would register return as a callback to be run on the contents of m after it is resolved, and return would just take
those contents and put them back into an already resolved promise.
Law 3 says that bind sequences effects correctly, but it’s harder to see it in this law than it was in the version above with
semicolon and braces. Law 3 would be clearer if we could rewrite it as

(m >>= f) >>= g behaves the same as m >>= (f >>= g).
But the problem is that doesn’t type check: f >>= g doesn’t have the right type to be on the right-hand side of >>=.
So we have to insert an extra anonymous function fun x -> ... to make the types correct.

10.8.6 Composition and Monad Laws

There is another monad operator called compose that can be used to compose monadic functions. For example, suppose
you have a monad with type 'a t, and two functions:

• f : 'a -> 'b t

• g : 'b -> 'c t

The composition of those functions would be
• compose f g : 'a -> 'c t
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That is, the composition would take a value of type 'a, apply f to it, extract the 'b out of the result, apply g to it, and
return that value.
We can code up compose using >>=; we don’t need to know anything more about the inner workings of the monad:

let compose f g x =
f x >>= fun y ->
g y

let ( >=> ) = compose

val compose :
('a -> int * string) -> (int -> int * string) -> 'a -> int * string = <fun>

val ( >=> ) :
('a -> int * string) -> (int -> int * string) -> 'a -> int * string = <fun>

As the last line suggests, compose can be expressed as infix operator written >=>.
Returning to our example of the maybe monad with a safe division operator, imagine that we have increment and decre-
ment functions:

let inc (x : int) : int option = Some (x + 1)
let dec (x : int) : int option = Some (x - 1)
let ( >>= ) x op =
match x with
| None -> None
| Some a -> op a

val inc : int -> int option = <fun>

val dec : int -> int option = <fun>

val ( >>= ) : 'a option -> ('a -> 'b option) -> 'b option = <fun>

The monadic compose operator would enable us to compose those two into an identity function without having to write
any additional code:

let ( >=> ) f g x =
f x >>= fun y ->
g y

let id : int -> int option = inc >=> dec

val ( >=> ) : ('a -> 'b option) -> ('b -> 'c option) -> 'a -> 'c option =
<fun>

val id : int -> int option = <fun>

Using the compose operator, there is a much cleaner formulation of the monad laws:
• Law 1: return >=> f behaves the same as f.
• Law 2: f >=> return behaves the same as f.
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• Law 3: (f >=> g) >=> h behaves the same as f >=> (g >=> h).
In that formulation, it becomes immediately clear that return is a left and right identity, and that composition is asso-
ciative.

10.9 Summary

This chapter has taken a deep dive into some advanced data structures, analysis techniques, and programming patterns.
Our goal has been to write correct, efficient, beautiful code. Did we succeed? You can be the judge.

10.9.1 Terms and Concepts

• amortized analysis
• association list
• associative
• associative array
• asymptotic bound
• asynchronous
• banker’s method
• big oh
• bind
• binding
• blocking
• brute force
• bucket
• caching
• callback
• chaining
• channel
• collision
• complexity
• computations
• concurrent
• concurrent composition
• cooperative
• credits
• cycle
• delayed evaluation
• deterministic
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• dictionary
• diffusion
• direct address table
• eager
• effects
• efficiency
• execution steps
• exponential time
• force
• hash function
• infinite data structure
• injective
• input size
• interleaving
• key
• latency hiding
• lazy
• left identity
• load factor
• Lwt monad
• map
• maybe monad
• memoization
• monads
• monads laws
• mutable map
• non-blocking
• nondeterministic
• parallelism
• pending
• persistent
• physicist’s method
• polynomial time
• potential energy
• preemptive
• probing
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• promises
• race conditions
• recursive values
• red-black map
• rejected
• resizing
• resolution loop
• resolved
• resolver
• right identity
• sequential
• sequential composition
• serialization
• set
• standard input
• standard output
• stream
• strict
• synchronous
• threads
• thunk
• worst case performance
• writer monad

10.9.2 Further Reading

• More OCaml: Algorithms, Methods, and Diversions, chapters 2 and 11, by John Whitington.
• Introduction to Objective Caml, chapter 8, section 4
• Real World OCaml, chapters 13 and 18
• Purely Functional Data Structures, by Chris Okasaki. Cambridge University Press, 1999.
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10.10 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: hash insert [★★]
Suppose we have a hash table on integer keys. The table currently has 7 empty buckets, and the hash function is simply
let hash k = k mod 7. Draw the hash table that results from inserting the keys 4, 8, 15, 16, 23, and 42 (with
whatever values you like).

Exercise: relax bucket RI [★★]
We required that hash table buckets must not contain duplicates. What would happen if we relaxed this RI to allow
duplicates? Would the efficiency of any operations (insert, find, or remove) change?

Exercise: strengthen bucket RI [★★]
What would happen if we strengthened the bucket RI to require each bucket to be sorted by the key? Would the efficiency
of any operations (insert, find, or remove) change?

Exercise: hash values [★★]
Use Hashtbl.hash : 'a -> int to hash several values of different types. Make sure to try at least (), false,
true, 0, 1, "", and [], as well as several “larger” values of each type. We saw that lists quickly can create collisions.
Try creating binary trees and finding a collision.

Exercise: hashtbl usage [★★]
Create a hash table tab with Hashtbl.create whose initial size is 16. Add 31 bindings to it with Hashtbl.add.
For example, you could add the numbers 1..31 as keys and the strings “1”..”31” as their values. Use Hashtbl.find
to look for keys that are in tab, as well as keys that are not.

Exercise: hashtbl stats [★]
Use the Hashtbl.stats function to find out the statistics of tab (from an exercise above). How many buckets are
in the table? How many buckets have a single binding in them?

Exercise: hashtbl bindings [★★]
Define a function bindings : ('a,'b) Hashtbl.t -> ('a*'b) list, such that bindings h returns
a list of all bindings in h. Use your function to see all the bindings in tab (from an exercise above). Hint: fold.

Exercise: hashtbl load factor [★★]
Define a function load_factor : ('a,'b) Hashtbl.t -> float, such that load_factor h is the load
factor of h. What is the load factor of tab? Hint: stats.
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Add one more binding to tab. Do the stats or load factor change? Now add yet another binding. Now do the stats or
load factor change? Hint: Hashtbl resizes when the load factor goes strictly above 2.

Exercise: functorial interface [★★★]
Use the functorial interface (i.e., Hashtbl.Make) to create a hash table whose keys are strings that are case-insensitive.
Be careful to obey the specification of Hashtbl.HashedType.hash:

If two keys are equal according to equal, then they have identical hash values as computed by hash.

Exercise: equals and hash [★★]
The previous exercise quoted the specification of Hashtbl.HashedType.hash. Compare that to Java’s Object.
hashCode() specification. Why do they both have this similar requirement?

Exercise: bad hash [★★]
Use the functorial interface to create a hash table with a really bad hash function (e.g., a constant function). Use the
stats function to see how bad the bucket distribution becomes.

Exercise: linear probing [★★★★]
We briefly mentioned probing as an alternative to chaining. Probing can be effectively used in hardware implementations
of hash tables, as well as in databases. With probing, every bucket contains exactly one binding. In case of a collision,
we search forward through the array, as described below.
Your task: Implement a hash table that uses linear probing. The details are below.
Find. Suppose we are trying to find a binding in the table. We hash the binding’s key and look in the appropriate bucket.
If there is already a different key in that bucket, we start searching forward through the array at the next bucket, then the
next bucket, and so forth, wrapping back around to the beginning of the array if necessary. Eventually we will either

• find an empty bucket, in which case the key we’re searching for is not bound in the table;
• find the key before we reach an empty bucket, in which case we can return the value; or
• never find the key or an empty bucket, instead wrapping back around to the original bucket, in which case all
buckets are full and the key is not bound in the table. This case actually should never occur, because we won’t allow
the load factor to get high enough for all buckets to be filled.

Insert. Insertion follows the same algorithm as finding a key, except that whenever we first find an empty bucket, we can
insert the binding there.
Remove. Removal is more difficult. Once the key is found, we can’t just make the bucket empty, because that would
affect future searches by causing them to stop early. Instead, we can introduce a special “deleted” value into that bucket
to indicate that the bucket does not contain a binding but the searches should not stop at it.
Resizing. Since we never want the array to become completely full, we can keep the load factor near 1/4. When the load
factor exceeds 1/2, we can double the array, bringing the load factor back to 1/4. When the load factor goes below 1/8,
we can half the array, again bringing the load factor back to 1/4. “Deleted” bindings complicate the definition of load
factor:

• When determining whether to double the table size, we calculate the load factor as (# of bindings + # of deleted
bindings) / (# of buckets). That is, deleted bindings contribute toward increasing the load factor.

• When determining whether the half the table size, we calculate the load factor as (# of bindings) / (# buckets). That
is, deleted bindings do not count toward increasing the load factor.
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When rehashing the table, deleted bindings are of course not re-inserted into the new table.

Exercise: functorized BST [★★★]
Our implementation of BSTs assumed that it was okay to compare values using the built-in comparison operators <, =,
and >. But what if the client wanted to use their own comparison operators? (e.g., to ignore case in strings, or to have sets
of records where only a single field of the record was used for ordering.) Implement a BstSet abstraction as a functor
parameterized on a structure that enables client-provided comparison operator(s), much like the standard library Set.

Exercise: efficient traversal [★★★]
Suppose you wanted to convert a tree to a list. You’d have to put the values stored in the tree in some order. Here are
three ways of doing that:

• preorder: each node’s value appears in the list before the values of its left then right subtrees.
• inorder: the values of the left subtree appear, then the value at the node, then the values of the right subtree.
• postorder: the values of a node’s left then right subtrees appear, followed by the value at the node.

Here is code that implements those traversals, along with some example applications:

type 'a tree = Leaf | Node of 'a tree * 'a * 'a tree

let rec preorder = function
| Leaf -> []
| Node (l,v,r) -> [v] @ preorder l @ preorder r

let rec inorder = function
| Leaf -> []
| Node (l,v,r) -> inorder l @ [v] @ inorder r

let rec postorder = function
| Leaf -> []
| Node (l,v,r) -> postorder l @ postorder r @ [v]

let t =
Node(Node(Node(Leaf, 1, Leaf), 2, Node(Leaf, 3, Leaf)),

4,
Node(Node(Leaf, 5, Leaf), 6, Node(Leaf, 7, Leaf)))

(*
t is

4
/ \

2 6
/ \ / \

1 3 5 7
*)

let () = assert (preorder t = [4;2;1;3;6;5;7])
let () = assert (inorder t = [1;2;3;4;5;6;7])
let () = assert (postorder t = [1;3;2;5;7;6;4])

On unbalanced trees, the traversal functions above require quadratic worst-case time (in the number of nodes), because
of the @ operator. Re-implement the functions without @, and instead using ::, such that they perform exactly one cons
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per Node in the tree. Thus, the worst-case execution time will be linear. You will need to add an additional accumulator
argument to each function, much like with tail recursion. (But your implementations won’t actually be tail recursive.)

Exercise: RB draw complete [★★]
Draw the perfect binary tree on the values 1, 2, …, 15. Color the nodes in three different ways such that (i) each way is a
red-black tree (i.e., satisfies the red-black invariants), and (ii) the three ways create trees with black heights of 2, 3, and
4, respectively. Recall that the black height of a tree is the maximum number of black nodes along any path from its root
to a leaf.

Exercise: RB draw insert [★★]
Draw the red-black tree that results from inserting the characters D A T A S T R U C T U R E into an empty tree. Carry
out the insertion algorithm yourself by hand, then check your work with the implementation provided in the book.

Exercise: pow2 [★★]
Using this type:

type 'a sequence = Cons of 'a * (unit -> 'a sequence)

Define a value pow2 : int sequence whose elements are the powers of two: <1; 2; 4; 8; 16, ...>.

Exercise: more sequences [★★]
Define the following sequences:

• the even naturals
• the lower-case alphabet on endless repeat: a, b, c, …, z, a, b, …
• unending pseudorandom coin flips (e.g., booleans or a variant with Heads and Tails constructors)

Exercise: nth [★★]
Define a function nth : 'a sequence -> int -> 'a, such that nth s n the element at zero-based position
n in sequence s. For example, nth pow2 0 = 1, and nth pow2 4 = 16.

Exercise: hd tl [★★]
Explain how each of the following sequence expressions is evaluated:

• hd nats

• tl nats

• hd (tl nats)

• tl (tl nats)

• hd (tl (tl nats))
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Exercise: filter [★★★]
Define a function filter : ('a -> bool) -> 'a sequence -> 'a sequence, such that filter p
s is the sub-sequence of s whose elements satisfy the predicate p. For example, filter (fun n -> n mod 2 =
0) nats would be the sequence <0; 2; 4; 6; 8; 10; ...>. If there is no element of s that satisfies p, then
filter p s does not terminate.

Exercise: interleave [★★★]
Define a function interleave : 'a sequence -> 'a sequence -> 'a sequence, such that
interleave <a1; a2; a3; ...> <b1; b2; b3; ...> is the sequence <a1; b1; a2; b2; a3;
b3; ...>. For example, interleave nats pow2 would be <0; 1; 1; 2; 2; 4; 3; 8; ...>.

Exercise: sift [★★★]
The Sieve of Eratosthenes is a way of computing the prime numbers.

• Start with the sequence <2; 3; 4; 5; 6; ...>.
• Take 2 as prime. Delete all multiples of 2, since they cannot be prime. That leaves <3; 5; 7; 9; 11; ...>.
• Take 3 as prime and delete its multiples. That leaves <5; 7; 11; 13; 17; ...>.
• Take 5 as prime, etc.

Define a function sift : int -> int sequence -> int sequence, such that sift n s removes all
multiples of n from s. Hint: filter.

Exercise: primes [★★★]
Define a sequence prime : int sequence, containing all the prime numbers starting with 2.

Exercise: approximately e [★★★★]
The exponential function 𝑒𝑥 can be computed by the following infinite sum:

𝑒𝑥 = 𝑥0

0! + 𝑥1

1! + 𝑥2

2! + 𝑥3

3! + ⋯ + 𝑥𝑘

𝑘! + ⋯

Define a function e_terms : float -> float sequence. Element k of the sequence should be term k from the
infinite sum. For example, e_terms 1.0 is the sequence <1.0; 1.0; 0.5; 0.1666...; 0.041666...;

...>. The easy way to compute that involves a function that computes 𝑓(𝑘) = 𝑥𝑘
𝑘! .

Define a function total : float sequence -> float sequence, such that total <a; b; c; ...>
is a running total of the input elements, i.e., <a; a+.b; a+.b+.c; ...>.
By using e_terms and total together, you will be able to compute successive approximations of 𝑒𝑥 that correspond
to finite prefixes of the infinite summation. For example, you could compute the stream <1.; 2.; 2.5; 2.
66666666666666652; 2.70833333333333304; ...>. It contains successive approximations of 𝑒1, such
that element 𝑛 of the stream is ∑𝑛

𝑘=0
1𝑘
𝑘! .

Define a function within : float -> float sequence -> float, such that within eps s is the first
element of s for which the absolute difference between that element and the element before it is strictly less than eps.
If there is no such element, within is permitted not to terminate (i.e., go into an “infinite loop”). As a precondition,
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the tolerance eps must be strictly positive. For example, within 0.1 <1.0; 2.0; 2.5; 2.75; 2.875;
2.9375; 2.96875; ...> is 2.9375.
Finally, define a function e : float -> float -> float such that e x eps is 𝑒𝑥 computed using a finite prefix
of the infinite summation above. The computation should halt when the absolute difference between successive approxi-
mations is below eps, which must be strictly positive. For example, e 1. 0.01would be 2.71666666666666634.

Exercise: better e [★★★★]
Although the idea for computing 𝑒𝑥 above through the summation of an infinite series is good, the exact algorithm sug-
gested above could be improved. For example, computing the 20th term in the sequence leads to a very large numerator
and denominator if 𝑥 is large. Investigate that behavior, comparing it to the built-in function exp : float ->
float. Find a better way to structure the computation to improve the approximations you obtain. Hint: what if when
computing term 𝑘 you already had term 𝑘 − 1? Then you could just do a single multiplication and division.

Also, you could improve the test thatwithin uses to determine whether two values are close. A good one for determining
whether 𝑎 and 𝑏 are close might be relative distance:

∣ 𝑎 − 𝑏
min(𝑎, 𝑏) ∣ < 𝜖.

Exercise: different sequence rep [★★★]
Consider this alternative representation of sequences:

type 'a sequence = Cons of (unit -> 'a * 'a sequence)

How would you code up hd : 'a sequence -> 'a, tl : 'a sequence -> 'a sequence, nats :
int sequence, and map : ('a -> 'b) -> 'a sequence -> 'b sequence for it? Explain how this
representation is even lazier than our original representation.

Exercise: lazy hello [★]
Define a value of type unit Lazy.t (which is synonymous with unit lazy_t), such that forcing that value with
Lazy.force causes "Hello lazy world" to be printed. If you force it again, the string should not be printed.

Exercise: lazy and [★★]
Define a function (&&&) : bool Lazy.t -> bool Lazy.t -> bool. It should behave like a short circuit
Boolean AND. That is, lb1 &&& lb2 should first force lb1. If it is false, the function should return false.
Otherwise, it should force lb2 and return its value.

Exercise: lazy sequence [★★★]
Implement map and filter for the 'a lazysequence type provided in the section on laziness.

Exercise: promise and resolve [★★]
Use the finished version of the Promise module we developed to do the following: create an integer promise and
resolver, bind a function on the promise to print the contents of the promise, then resolve the promise. Only after the
promise is resolved should the printing occur.
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Exercise: promise and resolve lwt [★★]
Repeat the above exercise, but use the Lwt library instead of our own Promise library. Make sure to use Lwt’s I/O
functions (e.g., Lwt_io.printf).

Exercise: timing challenge 1 [★★]
Here is a function that produces a time delay. We can use it to simulate an I/O call that takes a long time to complete.

(** [delay s] is a promise that resolves after about [s] seconds. *)
let delay (sec : float) : unit Lwt.t =

Lwt_unix.sleep sec

Write a function delay_then_print : unit -> unit Lwt.t that delays for three seconds then prints
"done".

Exercise: timing challenge 2 [★★★]
What happens when timing2 () is run? How long does it take to run? Make a prediction, then run the code to find
out.

open Lwt.Infix

let timing2 () =
let _t1 = delay 1. >>= fun () -> Lwt_io.printl "1" in
let _t2 = delay 10. >>= fun () -> Lwt_io.printl "2" in
let _t3 = delay 20. >>= fun () -> Lwt_io.printl "3" in
Lwt_io.printl "all done"

Exercise: timing challenge 3 [★★★]
What happens when timing3 () is run? How long does it take to run? Make a prediction, then run the code to find
out.

open Lwt.Infix

let timing3 () =
delay 1. >>= fun () ->
Lwt_io.printl "1" >>= fun () ->
delay 10. >>= fun () ->
Lwt_io.printl "2" >>= fun () ->
delay 20. >>= fun () ->
Lwt_io.printl "3" >>= fun () ->
Lwt_io.printl "all done"

Exercise: timing challenge 4 [★★★]
What happens when timing4 () is run? How long does it take to run? Make a prediction, then run the code to find
out.
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open Lwt.Infix

let timing4 () =
let t1 = delay 1. >>= fun () -> Lwt_io.printl "1" in
let t2 = delay 10. >>= fun () -> Lwt_io.printl "2" in
let t3 = delay 20. >>= fun () -> Lwt_io.printl "3" in
Lwt.join [t1; t2; t3] >>= fun () ->
Lwt_io.printl "all done"

Exercise: file monitor [★★★★]
Write an Lwt program that monitors the contents of a file named “log”. Specifically, your program should open the file,
continually read a line from the file, and as each line becomes available, print the line to stdout. When you reach the end
of the file (EOF), your program should terminate cleanly without any exceptions.
Here is starter code:

open Lwt.Infix
open Lwt_io
open Lwt_unix

(** [log ()] is a promise for an [input_channel] that reads from
the file named "log". *)

let log () : input_channel Lwt.t =
openfile "log" [O_RDONLY] 0 >>= fun fd ->
Lwt.return (of_fd ~mode:input fd)

(** [loop ic] reads one line from [ic], prints it to stdout,
then calls itself recursively. It is an infinite loop. *)

let rec loop (ic : input_channel) =
failwith "TODO"
(* hint: use [Lwt_io.read_line] and [Lwt_io.printlf] *)

(** [monitor ()] monitors the file named "log". *)
let monitor () : unit Lwt.t =

log () >>= loop

(** [handler] is a helper function for [main]. If its input is
[End_of_file], it handles cleanly exiting the program by
returning the unit promise. Any other input is re-raised
with [Lwt.fail]. *)

let handler : exn -> unit Lwt.t =
failwith "TODO"

let main () : unit Lwt.t =
Lwt.catch monitor handler

let _ = Lwt_main.run (main ())

Complete loop and handler. You might find the Lwt manual to be useful.
To compile your code, put it in a file named monitor.ml. Create a dune file for it:

(executable
(name monitor)
(libraries lwt.unix))
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And run it as usual:

$ dune exec ./monitor.exe

To simulate a file to which lines are being added over time, open a new terminal window and enter the following commands:

$ mkfifo log
$ cat >log

Now anything you type into the terminal window (after pressing return) will be added to the file named log. That will
enable you to interactively test your program.

Exercise: add opt [★★]
Here are the definitions for the maybe monad:

module type Monad = sig
type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t

end

module Maybe : Monad =
struct

type 'a t = 'a option

let return x = Some x

let ( >>= ) m f =
match m with
| Some x -> f x
| None -> None

end

Implement add : int Maybe.t -> int Maybe.t -> int Maybe.t. If either of the inputs is None,
then the output should be None. Otherwise, if the inputs are Some a and Some b then the output should be Some
(a+b). The definition of add must be located outside of Maybe, as shown above, which means that your solution may
not use the constructors None or Some in its code.

Exercise: fmap and join [★★]
Here is an extended signature for monads that adds two new operations:

module type ExtMonad = sig
type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t
val join : 'a t t -> 'a t

end

Just as the infix operator >>= is known as bind, the infix operator >>| is known as fmap. The two operators differ
only in the return type of their function argument.
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Using the boxmetaphor, >>| takes a boxed value, and a function that only knows how to work on unboxed values, extracts
the value from the box, runs the function on it, and boxes up that output as its own return value.
Also using the box metaphor, join takes a value that is wrapped in two boxes and removes one of the boxes.
It’s possible to implement >>| and join directly with pattern matching (as we already implemented >>=). It’s also
possible to implement them without pattern matching.
For this exercise, do the former: implement >>| and join as part of the Maybemonad, and do not use >>= or return
in the body of >>| or join.

Exercise: fmap and join again [★★]
Solve the previous exercise again. This time, you must use >>= and return to implement >>| and join, and you
may not use Some or None in the body of >>| and join.

Exercise: bind from fmap+join [★★★]
The previous exercise demonstrates that >>| and join can be implemented entirely in terms of >>= (and return),
without needing to know anything about the representation type 'a t of the monad.
It’s actually possible to go the other direction. That is, >>= can be implemented using just >>| and join, without
needing to know anything about the representation type 'a t.
Prove that this is so by completing the following code:

module type FmapJoinMonad = sig
type 'a t
val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t
val join : 'a t t -> 'a t
val return : 'a -> 'a t

end

module type BindMonad = sig
type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t

end

module MakeMonad (M : FmapJoinMonad) : BindMonad = struct
(* TODO *)

end

Hint: let the types be your guide.

Exercise: list monad [★★★]
We’ve seen three examples of monads already; let’s examine a fourth, the list monad. The “something more” that it does
is to upgrade functions to work on lists instead of just single values. (Note, there is no notion of concurrency intended
here. It’s not that the list monad runs functions concurrently on every element of a list. The Lwt monad does, however,
provide that kind of functionality.)
For example, suppose you have these functions:

let inc x = x + 1
let pm x = [x; -x]
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Then the list monad could be used to apply those functions to every element of a list and return the result as a list. For
example,

• [1; 2; 3] >>| inc is [2; 3; 4].
• [1; 2; 3] >>= pm is [1; -1; 2; -2; 3; -3].
• [1; 2; 3] >>= pm >>| inc is [2; 0; 3; -1; 4; -2].

One way to think about this is that the list monad operators take a list of inputs to a function, run the function on all those
inputs, and give you back the combined list of outputs.
Complete the following definition of the list monad:

module type ExtMonad = sig
type 'a t
val return : 'a -> 'a t
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t
val join : 'a t t -> 'a t

end

module ListMonad : ExtMonad = struct
type 'a t = 'a list

(* TODO *)
end

Hints: Leave >>= for last. Let the types be your guide. There are two very useful list library functions that can help you.

Exercise: trivial monad laws [★★★]
Here is the world’s most trivial monad. All it does is wrap a value inside a constructor.

module Trivial : Monad = struct
type 'a t = Wrap of 'a
let return x = Wrap x
let ( >>= ) (Wrap x) f = f x

end

Prove that the three monad laws, as formulated using >>= and return, hold for the trivial monad.
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CHAPTER

ELEVEN

INTERPRETERS

A skilled artisan must understand the tools with which they work. A carpenter needs to understand saws and planes. A
chef needs to understand knives and pots. A programmer, among other tools, needs to understand the compilers that
implement the programming languages they use.
A full understanding of compilation requires a full course or two. So here, we’re going to take a necessarily brief look at
how to implement programming languages. The goal is to understand some of the basic implementation techniques, so
as to demystify the tools you’re using. Although you might never need to implement a full general-purpose programming
language, it’s highly likely that at some point in your career you will want to design and implement some small, special-
purpose language. Sometimes those are called domain-specific languages (DSLs). What we cover here should help you
with that task.
A compiler is a program that implements a programming language. So is an interpreter. But they differ in their imple-
mentation strategy.
A compiler’s primary task is translation. It takes as input a source program and produces as output a target program. The
source program is typically expressed in a high-level language, such as Java or OCaml. The target program is typically
expressed in a low-level language, such as MIPS or x86 assembly. Then the compiler’s job is done, and it is no longer
needed. Later the OS helps to load and execute the target program. Typically, a compiler results in higher-performance
implementations.
An interpreter’s primary task is execution. It takes as input a source program and directly executes that program without
producing any target program. The OS actually loads and executes the interpreter, and the interpreter is then responsible
for executing the program. Typically, an interpreter is easier to implement than a compiler.
It’s also possible to implement a language using a mixture of compilation and interpretation. The most common example
of that involves virtual machines that execute bytecode, such as the Java Virtual Machine (JVM) or the OCaml virtual
machine (which used to be called the Zinc Machine). With this strategy, a compiler translates the source language into
bytecode, and the virtual machine interprets the bytecode.
High-performance virtual machines, such as Java’s HotSpot, take this a step further and embed a compiler inside the
virtual machine. When the machine notices that a piece of bytecode is being interpreted frequently, it uses the compiler
to translate that bytecode into the language of the machine (e.g., x86) on which the machine is running. This is called
just-in-time compilation (JIT), because code is being compiled just before it is executed.
A compiler goes through several phases as it translates a program:
Lexing. During lexing, the compiler transforms the original source code of the program from a sequence of characters to
a sequence of tokens. Tokens are adjacent characters that have some meaning when grouped together. You might think
of them analogously to words in a natural language. Indeed, keywords such as if and match would be tokens in OCaml.
So would constants such as 42 and "hello", variable names such as x and lst, and punctuation such as (, ), and ->.
Lexing typically removes whitespace, because it is no longer needed once the tokens have been identified. (Though in a
whitespace-sensitive language like Python, it would need to be preserved.)
Parsing. During parsing, the compiler transforms the sequence of tokens into a tree called the abstract syntax tree (AST).
As the name suggests, this tree abstracts from the concrete syntax of the language. Recall that abstraction can mean
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“forgetting about details.” The AST typically forgets about concrete details. For example:
• In 1 + (2 + 3) the parentheses group the right-hand addition operation, indicating it should be evaluated first.
A tree can represent that as follows:

+
/ \

1 +
/ \

2 3

Parentheses are no longer needed, because the structure of the tree encodes them.
• In [1; 2; 3], the square brackets delineate the beginning and end of the list, and the semicolons separate the
list elements. A tree could represent that as a node with several children:

list
/ | \

1 2 3

The brackets and semicolons are no longer needed.
• In fun x -> 42, the fun keyword and -> punctuation mark separate the arguments and body of the function
from the surrounding code. A tree can represent that as a node with two children:

function
/ \

x 42

The keyword and punctuation are no longer needed.
An AST thus represents the structure of a program at a level that is easier for the compiler writer to manipulate.
Semantic analysis. During semantic analysis, the compiler checks to see whether the program is meaningful according to
the rules of the language that the compiler is implementing. The most common kind of semantic analysis is type checking:
the compiler analyzes the types of all the expressions that appear in the program to see whether there is a type error or
not. Type checking typically requires producing a data structure called a symbol table that maps identifiers (e.g., variable
names) to their types. As a new scope is entered, the symbol table is extended with new bindings that might shadow old
bindings; and as the scope is exited, the new bindings are removed, thus restoring the old bindings. So a symbol table
blends features of a dictionary and a stack data structure.
Besides type checking, there are other kinds of semantic analysis. Examples include the following:

• checking whether the branches of an OCaml pattern match are exhaustive,
• checking whether a C break keyword occurs within the body of a loop, and
• checking whether a Java field marked final has been initialized by the end of a constructor.

You can think of parsing as “checking to see whether a program is meaningful”—which is how we just defined semantic
analysis. So the distinction between parsing and semantic analysis is more about convenience: parsing does enough work
to implement the production of an AST, and semantic analysis does the rest of the work.
Sometimes semantic analysis is even necessary to fully determine what the AST should be! Consider, for example, the
expression (foo) - bar in a C-like language. It might be:

• the unary negation of a variable bar, cast to the type foo, or
• the binary subtraction operation with operands foo and bar, where the parentheses were gratuitous.
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Until enough semantic analysis has been done to figure out whether foo is a variable name or a type name, the compiler
doesn’t know which AST to generate. In such situations, the parser typically produces an AST in which some tree nodes
represent the ambiguous syntax, then the semantic analysis phase rewrites the tree to be unambiguous.
Translation to intermediate representation. After semantic analysis, a compiler could immediately translate the AST
(augmented with symbol tables) into the target language. But if the same compiler wanted to produce output for multiple
targets (e.g., for x86 and ARM and MIPS), that would require defining a translation from the AST to each of the targets.
In practice, compilers typically don’t do that. Instead, they first translate the AST to an intermediate representation (IR).
Think of the IR as a kind of abstraction of many assembly languages. Many source languages (e.g., C, Java, OCaml)
could be translated to the same IR, and from that IR, many target language outputs (e.g., x86, ARM, MIPS) could be
produced.
An IR language typically has abstract machine instructions that accomplish conceptually simple tasks: loading from or
storing to memory, performing binary operations, calling and returning, and jumping to other instructions. The abstract
machine typically has an unbounded number of registers available for use, much like a source program can have an
unbounded number of variables. Real machines, however, have a finite number of registers, which is one way in which
the IR is an abstraction.
Target code generation. The final phase of compilation is to generate target code from the IR. This phase typically
involves selecting concrete machine instructions (such as x86 opcodes), and determining which variables will be stored in
memory (which is slow to access) vs. processor registers (which are fast to access but limited in number). As part of code
generation, a compiler therefore attempts to optimize the performance of the target code. Some examples of optimizations
include:

• eliminating array bounds checks, if they are provably guaranteed to succeed;
• eliminating redundant computations;
• replacing a function call with the body of the function itself, suitably instantiated on the arguments, to eliminate
the overhead of calling and returning; and

• re-ordering machine instructions so that (e.g.) slow reads from memory are begun before their results are needed,
and doing other instructions in the meanwhile that do not need the result of the read.

Groups of Phases. The phases of compilation can be grouped into two or three pieces:
• The front end of the compiler does lexing, parsing, and semantic analysis. It produces an AST and associated
symbol tables. It transforms the AST into an IR.

• Themiddle end (if it exists) of the compiler operates on the IR. Usually this involves performing optimizations that
are independent of the target language.

• The back end of the compiler does code generation, including further optimization.
Interpretation Phases. An interpreter works like the front (and possiblymiddle) end of a compiler. That is, an interpreter
does lexing, parsing, and semantic analysis. It might then immediately begin executing the AST, or it might transform
the AST into an IR and begin executing the IR.
In the rest of this book, we are going to focus on interpreters. We’ll ignore IRs and code generation, and instead study
how to directly execute the AST.

Note: Because of the additional tooling required, the code in this chapter is not runnable in a browser like previous
chapters. But we do provide downloadable code for each interpreter implemented here.
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11.1 Example: Calculator

Let’s start with a video guided tour of implementing an interpreter for a tiny language: just a calculator, essentially, with
addition and multiplication. The point of this guided tour is not to go into great detail about any single piece of it. Rather,
the goal is to get a little familiarity with the OCaml tools and techniques for lexing, parsing, and evaluation. They are all
rather tightly coupled, which makes it challenging to understand one piece without having a high-level understanding of
the whole. After we get that understanding from the tour, we’ll start over again in the next section (on parsing), and at
that time we’ll dive into the details.

11.2 Parsing

You could code your own lexer and parser from scratch. But many languages include tools for automatically generating
lexers and parsers from formal descriptions of the syntax of a language. The ancestors of many of those tools are lex and
yacc, which generate lexers and parsers, respectively; lex and yacc were developed in the 1970s for C.
As part of the standard distribution, OCaml provides lexer and parser generators named ocamllex and ocamlyacc. There
is a more modern parser generator named menhir available through opam; menhir is “90% compatible” with ocamlyacc
and provides significantly improved support for debugging generated parsers.

11.2.1 Lexers

Lexer generators such as lex and ocamllex are built on the theory of deterministic finite automata, which is typically
covered in a discrete math or theory of computation course. Such automata accept regular languages, which can be
described with regular expressions. So, the input to a lexer generator is a collection of regular expressions that describe
the tokens of the language. The output is an automaton implemented in a high-level language, such as C (for lex) or
OCaml (for ocamllex).
That automaton itself takes files (or strings) as input, and each character of the file becomes an input to the automaton.
Eventually the automaton either recognizes the sequence of characters it has received as a valid token in the language, in
which case the automaton produces an output of that token and resets itself to being recognizing the next token, or rejects
the sequence of characters as an invalid token.

11.2.2 Parsers

Parser generators such as yacc and menhir are similarly built on the theory of automata. But they use pushdown automata,
which are like finite automata that alsomaintain a stack onto which they can push and pop symbols. The stack enables them
to accept a bigger class of languages, which are known as context-free languages (CFLs). One of the big improvements
of CFLs over regular languages is that CFLs can express the idea that delimiters must be balanced—for example, that
every opening parenthesis must be balanced by a closing parenthesis.
Just as regular languages can be expressed with a special notation (regular expressions), so can CFLs. Context-free gram-
mars are used to describe CFLs. A context-free grammar is a set of production rules that describe how one symbol can
be replaced by other symbols. For example, the language of balanced parentheses, which includes strings such as (())
and ()() and (()()), but not strings such as ) or ((), is generated by these rules:

• 𝑆 → (𝑆)
• 𝑆 → 𝑆𝑆
• 𝑆 → 𝜖
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The symbols occurring in those rules are 𝑆, (, and ). The 𝜖 denotes the empty string. Every symbol is either a nonterminal
or a terminal, depending on whether it is a token of the language being described. 𝑆 is a nonterminal in the example above,
and ( and ) are terminals.
In the next section we’ll study Backus-Naur Form (BNF), which is a standard notation for context-free grammars. The
input to a parser generator is typically a BNF description of the language’s syntax. The output of the parser generator is a
program that recognizes the language of the grammar. As input, that program expects the output of the lexer. As output,
the program produces a value of the AST type that represents the string that was accepted. The programs output by the
parser generator and lexer generator are thus dependent upon on another and upon the AST type.

11.2.3 Backus-Naur Form

The standard way to describe the syntax of a language is with a mathematical notation called Backus-Naur form (BNF),
named for its inventors, John Backus and Peter Naur. There are many variants of BNF. Here, we won’t be too picky about
adhering to one variant or another. Our goal is just to have a reasonably good notation for describing language syntax.
BNF uses a set of derivation rules to describe the syntax of a language. Let’s start with an example. Here’s the BNF
description of a tiny language of expressions that include just the integers and addition:

e ::= i | e + e
i ::= <integers>

These rules say that an expression e is either an integer i, or two expressions with the symbol + appearing between them.
The syntax of “integers” is left unspecified by these rules.
Each rule has the form

metavariable ::= symbols | ... | symbols

A metavariable is variable used in the BNF rules, rather than a variable in the language being described. The ::= and |
that appear in the rules are metasyntax: BNF syntax used to describe the language’s syntax. Symbols are sequences that
can include metavariables (such as i and e) as well as tokens of the language (such as +). Whitespace is not relevant in
these rules.
Sometimes we might want to easily refer to individual occurrences of metavariables. We do that by appending some
distinguishing mark to the metavariable(s). For example, we could rewrite the first rule above as

e ::= i | e1 + e2

or as

e ::= i | e + e'

Now we can talk about e2 or e' rather than having to say “the e on the right-hand side of +”.
If the language itself contains either of the tokens ::= or |—and OCaml does contain the latter—then writing BNF can
become a little confusing. Some BNF notations attempt to deal with that by using additional delimiters to distinguish
syntax from metasyntax. We will be more relaxed and assume that the reader can distinguish them.
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11.2.4 Example: SimPL

As a running example, we’ll use a very simple programming language that we call SimPL. Here is its syntax in BNF:

e ::= x | i | b | e1 bop e2
| if e1 then e2 else e3
| let x = e1 in e2

bop ::= + | * | <=

x ::= <identifiers>

i ::= <integers>

b ::= true | false

Obviously there’s a lot missing from this language, especially functions. But there’s enough in it for us to study the
important concepts of interpreters without getting too distracted by lots of language features. Later, we will consider a
larger fragment of OCaml.
We’re going to develop a complete interpreter for SimPL. You can download the finished interpreter here: simpl.zip. Or,
just follow along as we build each piece of it.

The AST

Since the AST is the most important data structure in an interpreter, let’s design it first. We’ll put this code in a file named
ast.ml:

type bop =
| Add
| Mult
| Leq

type expr =
| Var of string
| Int of int
| Bool of bool
| Binop of bop * expr * expr
| Let of string * expr * expr
| If of expr * expr * expr

There is one constructor for each of the syntactic forms of expressions in the BNF. For the underlying primitive syntactic
classes of identifiers, integers, and booleans, we’re using OCaml’s own string, int, and bool types.
Instead of defining the bop type and a single Binop constructor, we could have defined three separate constructors for
the three binary operators:

type expr =
...
| Add of expr * expr
| Mult of expr * expr
| Leq of expr * expr
...

But by factoring out the bop type we will be able to avoid a lot of code duplication later in our implementation.
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The Menhir Parser

Let’s start with parsing, then return to lexing later. We’ll put all theMenhir code we write below in a file named parser.
mly. The .mly extension indicates that this file is intended as input toMenhir. (The ‘y’ alludes to yacc.) This file contains
the grammar definition for the language we want to parse. The syntax of grammar definitions is described by example
below. Be warned that it’s maybe a little weird, but that’s because it’s based on tools (like yacc) that were developed quite
awhile ago. Menhir will process that file and produce a file named parser.ml as output; it contains an OCaml program
that parses the language. (There’s nothing special about the name parser here; it’s just descriptive.)
There are four parts to a grammar definition: header, declarations, rules, and trailer.
Header. The header appears between %{ and %}. It is code that will be copied literally into the generated parser.ml.
Here we use it just to open the Astmodule so that, later on in the grammar definition, we can write expressions like Int
i instead of Ast.Int i. If we wanted, we could also define some OCaml functions in the header.

%{
open Ast
%}

Declarations. The declarations section begins by saying what the lexical tokens of the language are. Here are the token
declarations for SimPL:

%token <int> INT
%token <string> ID
%token TRUE
%token FALSE
%token LEQ
%token TIMES
%token PLUS
%token LPAREN
%token RPAREN
%token LET
%token EQUALS
%token IN
%token IF
%token THEN
%token ELSE
%token EOF

Each of these is just a descriptive name for the token. Nothing so far says that LPAREN really corresponds to (, for
example. We’ll take care of that when we define the lexer.
The EOF token is a special end-of-file token that the lexer will return when it comes to the end of the character stream.
At that point we know the complete program has been read.
The tokens that have a <type> annotation appearing in them are declaring that they will carry some additional data
along with them. In the case of INT, that’s an OCaml int. In the case of ID, that’s an OCaml string.
After declaring the tokens, we have to provide some additional information about precedence and associativity. The
following declarations say that PLUS is left associative, IN is not associative, and PLUS has higher precedence than IN
(because PLUS appears on a line after IN).

%nonassoc IN
%nonassoc ELSE
%left LEQ
%left PLUS
%left TIMES
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Because PLUS is left associative, 1 + 2 + 3 will parse as (1 + 2) + 3 and not as 1 + (2 + 3). Because
PLUS has higher precedence than IN, the expression let x = 1 in x + 2 will parse as let x = 1 in (x +
2) and not as (let x = 1 in x) + 2. The other declarations have similar effects.
Getting the precedence and associativity declarations correct is one of the trickier parts of developing a grammar definition.
It helps to develop the grammar definition incrementally, adding just a couple tokens (and their associated rules, discussed
below) at a time to the language. Menhir will let you know when you’ve added a token (and rule) for which it is confused
about what you intend the precedence and associativity should be. Then you can add declarations and test to make sure
you’ve got them right.
After declaring associativity and precedence, we need to declare what the starting point is for parsing the language. The
following declaration says to start with a rule (defined below) named prog. The declaration also says that parsing a prog
will return an OCaml value of type Ast.expr.

%start <Ast.expr> prog

Finally, %% ends the declarations section.

%%

Rules. The rules section contains production rules that resemble BNF, although where in BNF we would write “::=” these
rules simply write “:”. The format of a rule is

name:
| production1 { action1 }
| production2 { action2 }
| ...
;

The production is the sequence of symbols that the rule matches. A symbol is either a token or the name of another rule.
The action is the OCaml value to return if a match occurs. Each production can bind the value carried by a symbol and
use that value in its action. This is perhaps best understood by example, so let’s dive in.
The first rule, named prog, has just a single production. It says that a prog is an expr followed by EOF. The first part
of the production, e=expr, says to match an expr and bind the resulting value to e. The action simply says to return
that value e.

prog:
| e = expr; EOF { e }
;

The second and final rule, named expr, has productions for all the expressions in SimPL.

expr:
| i = INT { Int i }
| x = ID { Var x }
| TRUE { Bool true }
| FALSE { Bool false }
| e1 = expr; LEQ; e2 = expr { Binop (Leq, e1, e2) }
| e1 = expr; TIMES; e2 = expr { Binop (Mult, e1, e2) }
| e1 = expr; PLUS; e2 = expr { Binop (Add, e1, e2) }
| LET; x = ID; EQUALS; e1 = expr; IN; e2 = expr { Let (x, e1, e2) }
| IF; e1 = expr; THEN; e2 = expr; ELSE; e3 = expr { If (e1, e2, e3) }
| LPAREN; e=expr; RPAREN {e}
;
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• The first production, i = INT, says to match an INT token, bind the resulting OCaml int value to i, and return
AST node Int i.

• The second production, x = ID, says to match an ID token, bind the resulting OCaml string value to x, and
return AST node Var x.

• The third and fourth productions match a TRUE or FALSE token and return the corresponding AST node.
• The fifth, sixth, and seventh productions handle binary operators. For example, e1 = expr; PLUS; e2 =
expr says to match an expr followed by a PLUS token followed by another expr. The first expr is bound to
e1 and the second to e2. The AST node returned is Binop (Add, e1, e2).

• The eighth production, LET; x = ID; EQUALS; e1 = expr; IN; e2 = expr, says to match a
LET token followed by an ID token followed by an EQUALS token followed by an expr followed by an IN token
followed by another expr. The string carried by the ID is bound to x, and the two expressions are bound to e1
and e2. The AST node returned is Let (x, e1, e2).

• The last production, LPAREN; e = expr; RPAREN says to match an LPAREN token followed by an expr
followed by an RPAREN. The expression is bound to e and returned.

The final production might be surprising, because it was not included in the BNF we wrote for SimPL. That BNF was
intended to describe the abstract syntax of the language, so it did not include the concrete details of how expressions can
be grouped with parentheses. But the grammar definition we’ve been writing does have to describe the concrete syntax,
including details like parentheses.
There can also be a trailer section after the rules, which like the header is OCaml code that is copied directly into the
output parser.ml file.

The Ocamllex Lexer

Now let’s see how the lexer generator is used. A lot of it will feel familiar from our discussion of the parser generator.
We’ll put all the ocamllex code we write below in a file named lexer.mll. The .mll extension indicates that this file
is intended as input to ocamllex. (The ‘l’ alludes to lexing.) This file contains the lexer definition for the language we want
to lex. Menhir will process that file and produce a file named lexer.ml as output; it contains an OCaml program that
lexes the language. (There’s nothing special about the name lexer here; it’s just descriptive.)
There are four parts to a lexer definition: header, identifiers, rules, and trailer.
Header. The header appears between { and }. It is code that will simply be copied literally into the generated lexer.
ml.

{
open Parser
}

Here, we’ve opened the Parser module, which is the code in parser.ml that was produced by Menhir out of
parser.mly. The reason we open it is so that we can use the token names declared in it, e.g., TRUE, LET, and
INT, inside our lexer definition. Otherwise, we’d have to write Parser.TRUE, etc.
Identifiers. The next section of the lexer definition contains identifiers, which are named regular expressions. These will
be used in the rules section, next.
Here are the identifiers we’ll use with SimPL:

let white = [' ' '\t']+
let digit = ['0'-'9']
let int = '-'? digit+
let letter = ['a'-'z' 'A'-'Z']
let id = letter+
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The regular expressions above are for whitespace (spaces and tabs), digits (0 through 9), integers (non-empty sequences of
digits, optionally preceded by a minus sign), letters (a through z, and A through Z), and SimPL variable names (non-empty
sequences of letters) aka ids or “identifiers”—though we’re now using that word in two different senses.
FYI, these aren’t exactly the same as the OCaml definitions of integers and identifiers.
The identifiers section actually isn’t required; instead of writing white in the rules we could just directly write the regular
expression for it. But the identifiers help make the lexer definition more self-documenting.
Rules. The rules section of a lexer definition is written in a notation that also resembles BNF. A rule has the form

rule name =
parse
| regexp1 { action1 }
| regexp2 { action2 }
| ...

Here, rule and parse are keywords. The lexer that is generated will attempt to match against regular expressions in
the order they are listed. When a regular expression matches, the lexer produces the token specified by its action.
Here is the (only) rule for the SimPL lexer:

rule read =
parse
| white { read lexbuf }
| "true" { TRUE }
| "false" { FALSE }
| "<=" { LEQ }
| "*" { TIMES }
| "+" { PLUS }
| "(" { LPAREN }
| ")" { RPAREN }
| "let" { LET }
| "=" { EQUALS }
| "in" { IN }
| "if" { IF }
| "then" { THEN }
| "else" { ELSE }
| id { ID (Lexing.lexeme lexbuf) }
| int { INT (int_of_string (Lexing.lexeme lexbuf)) }
| eof { EOF }

Most of the regular expressions and actions are self-explanatory, but a couple are not:
• The first, white { read lexbuf }, means that if whitespace is matched, instead of returning a token the
lexer should just call the read rule again and return whatever token results. In other words, whitespace will be
skipped.

• The two for ids and ints use the expression Lexing.lexeme lexbuf. This calls a function lexeme defined
in the Lexing module, and returns the string that matched the regular expression. For example, in the id rule, it
would return the sequence of upper and lower case letters that form the variable name.

• The eof regular expression is a special one that matches the end of the file (or string) being lexed.
Note that it’s important that the id regular expression occur nearly last in the list. Otherwise, keywords like true and
if would be lexed as variable names rather than the TRUE and IF tokens.
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Generating the Parser and Lexer

Now that we have completed parser and lexer definitions in parser.mly and lexer.mll, we can run Menhir and
ocamllex to generate the parser and lexer from them. Let’s organize our code like this:

- <some root folder>
- dune-project
- src
- ast.ml
- dune
- lexer.mll
- parser.mly

In src/dune, write the following:

(library
(name interp))

(menhir
(modules parser))

(ocamllex lexer)

That organizes the entire src folder into a library named Interp. The parser and lexer will be modules Interp.
Parser and Interp.Lexer in that library.
Run dune build to compile the code, thus generating the parser and lexer. If you want to see the generated code,
look in _build/default/src/ for parser.ml and lexer.ml.

The Driver

Finally, we can pull together the lexer and parser to transform a string into an AST. Put this code into a file named
src/main.ml:

open Ast

let parse (s : string) : expr =
let lexbuf = Lexing.from_string s in
let ast = Parser.prog Lexer.read lexbuf in
ast

This function takes a string s and uses the standard library’s Lexing module to create a lexer buffer from it. Think
of that buffer as the token stream. The function then lexes and parses the string into an AST, using Lexer.read and
Parser.prog. The function Lexer.read corresponds to the rule named read in our lexer definition, and the
function Parser.prog to the rule named prog in our parser definition.
Note how this code runs the lexer on a string; there is a corresponding function from_channel to read from a file.
We could now use parse interactively to parse some strings. Start utop and load the library declared in src with this
command:

$ dune utop src

Now Interp.Main.parse is available for use:
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# Interp.Main.parse "let x = 3110 in x + x";;
- : Interp.Ast.expr =
Interp.Ast.Let ("x", Interp.Ast.Int 3110,
Interp.Ast.Binop (Interp.Ast.Add, Interp.Ast.Var "x", Interp.Ast.Var "x"))

That completes lexing and parsing for SimPL.

11.3 Substitution Model

After lexing and parsing, the next phase is type checking (and other semantic analysis). We will skip that phase for now
and return to it at the end of this chapter.
Instead, let’s turn our attention to evaluation. In a compiler, the next phase after semantic analysis would be rewriting
the AST into an intermediate representation (IR), in preparation for translating the program into machine code. An
interpreter might also rewrite the AST into an IR, or it might directly begin evaluating the AST. One reason to rewrite the
AST would be to simplify it: sometimes, certain language features can be implemented in terms of others, and it makes
sense to reduce the language to a small core to keep the interpreter implementation shorter. Syntactic sugar is a great
example of that idea.
Eliminating syntactic sugar is called desugaring. As an example, we know that let x = e1 in e2 and (fun x
-> e2) e1 are equivalent. So, we could regard let expressions as syntactic sugar.
Suppose we had a language whose AST corresponded to this BNF:

e ::= x | fun x -> e | e1 e2
| let x = e1 in e2

Then the interpreter could desugar that into a simpler AST—in a sense, an IR—by transforming all occurrences of let
x = e1 in e2 into (fun x -> e2) e1. Then the interpreter would need to evaluate only this smaller language:

e ::= x | fun x -> e | e1 e2

After having simplified the AST, it’s time to evaluate it. Evaluation is the process of continuing to simplify the AST until
it’s just a value. In other words, evaluation is the implementation of the language’s dynamic semantics. Recall that a value
is an expression for which there is no computation remaining to be done. Typically, we think of values as a strict syntactic
subset of expressions, though we’ll see some exceptions to that later.
Big vs. small step evaluation. We’ll define evaluation with a mathematical relation, just as we did with type checking.
Actually, we’re going to define three relations for evaluation:

• The first, -->, will represent how a program takes one single step of execution.
• The second, -->*, is the reflexive transitive closure of -->, and it represents how a program takes multiple steps
of execution.

• The third, ==>, abstracts away from all the details of single steps and represents how a program reduces directly
to a value.

The style in which we are defining evaluation with these relations is known as operational semantics, because we’re using
the relations to specify how the machine “operates” as it evaluates programs. There are two other major styles, known as
denotational semantics and axiomatic semantics, but we won’t cover those here.
We can further divide operational semantics into two separate sub-styles of defining evaluation: small step vs. big step
semantics. The first relation, -->, is in the small-step style, because it represents execution in terms of individual small
steps. The third, ==>, is in the big-step style, because it represents execution in terms of a big step from an expression
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directly to a value. The second relation, -->*, blends the two. Indeed, our desire is for it to bridge the gap in the following
sense:
Relating big and small steps: For all expressions e and values v, it holds that e -->* v if and only if e ==> v.
In other words, if an expression takes many small steps and eventually reaches a value, e.g., e --> e1 --> ....
--> en --> v, then it ought to be the case that e ==> v. So the big step relation is a faithful abstraction of the
small step relation: it just forgets about all the intermediate steps.
Why have two different styles, big and small? Each is a little easier to use than the other in certain circumstances, so it
helps to have both in our toolkit. The small-step semantics tends to be easier to work with when it comes to modeling
complicated language features, but the big-step semantics tends to be more similar to how an interpreter would actually
be implemented.
Substitution vs. environment models. There’s another choice we have to make, and it’s orthogonal to the choice of
small vs. big step. There are two different ways to think about the implementation of variables:

• We could eagerly substitute the value of a variable for its name throughout the scope of that name, as soon as we
find a binding of the variable.

• We could lazily record the substitution in a dictionary, which is usually called an environment when used for this
purpose, and we could look up the variable’s value in that environment whenever we find its name mentioned in a
scope.

Those ideas lead to the substitution model of evaluation and the environment model of evaluation. As with small step vs.
big step, the substitution model tends to be nicer to work with mathematically, whereas the environment model tends to
be more similar to how an interpreter is implemented.
Some examples will help to make sense of all this. Let’s look, next, at how to define the relations for SimPL.

11.3.1 Evaluating SimPL in the Substitution Model

Let’s begin by defining a small-step substitution-model semantics for SimPL. That is, we’re going to define a relation -->
that represents how an expression take a single step at a time, and we’ll implement variables using substitution of values
for names.
Recall the syntax of SimPL:

e ::= x | i | b | e1 bop e2
| if e1 then e2 else e3
| let x = e1 in e2

bop ::= + | * | <=

We’re going to need to know when expressions are done evaluating, that is, when they are considered to be values. For
SimPL, we’ll define the values as follows:

v ::= i | b

That is, a value is either an integer constant or a Boolean constant.
For each of the syntactic forms that a SimPL expression could have, we’ll now define some evaluation rules, which
constitute an inductive definition of the --> relation. Each rule will have the form e --> e', meaning that e takes a
single step to e'.
Although variables are given first in the BNF, let’s pass over them for now, and come back to them after all the other
forms.
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Constants. Integer and Boolean constants are already values, so they cannot take a step. That might at first seem
surprising, but remember that we are intending to also define a -->* relation that will permit zero or more steps; whereas,
the --> relation represents exactly one step.
Technically, all we have to do to accomplish this is to just not write any rules of the form i --> e or b --> e for
some e. So we’re already done, actually: we haven’t defined any rules yet.
Let’s introduce another notation written e -/->, which is meant to look like an arrow with a slash through it, to mean
“there does not exist an e' such that e --> e'”. Using that we could write:

• i -/->

• b -/->

Though not strictly speaking part of the definition of -->, those propositions help us remember that constants do not
step. In fact, we could more generally write, “for all v, it holds that v -/->.”
Binary operators. A binary operator application e1 bop e2 has two subexpressions, e1 and e2. That leads to some
choices about how to evaluate the expression:

• We could first evaluate the left-hand side e1, then the right-hand side e2, then apply the operator.
• Or we could do the right-hand side first, then the left-hand side.
• Or we could interleave the evaluation, first doing a step of e1, then of e2, then e1, then e2, etc.
• Or maybe the operator is a short-circuit operator, in which case one of the subexpressions might never be evaluated.

And there are many other strategies you might be able to invent.
It turns out that the OCaml language definition says that (for non-short-circuit operators) it is unspecified which side is
evaluated first. The current implementation happens to evaluate the right-hand side first, but that’s not something any
programmer should rely upon.
Many people would expect left-to-right evaluation, so let’s define the --> relation for that. We start by saying that the
left-hand side can take a step:

e1 bop e2 --> e1' bop e2
if e1 --> e1'

Similarly to the type system for SimPL, this rule says that two expressions are in the --> relation if two other (simpler)
subexpressions are also in the --> relation. That’s what makes it an inductive definition.
If the left-hand side is finished evaluating, then the right-hand side may begin stepping:

v1 bop e2 --> v1 bop e2'
if e2 --> e2'

Finally, when both sides have reached a value, the binary operator may be applied:

v1 bop v2 --> v
if v is the result of primitive operation v1 bop v2

By primitive operation, we mean that there is some underlying notion of what bop actually means. For example, the
character + is just a piece of syntax, but we are conditioned to understand its meaning as an arithmetic addition operation.
The primitive operation typically is something implemented by hardware (e.g., an ADD opcode), or by a run-time library
(e.g., a pow function).
For SimPL, let’s delegate all primitive operations to OCaml. That is, the SimPL + operator will be the same as the OCaml
+ operator, as will * and <=.
Here’s an example of using the binary operator rule:
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(3*1000) + ((1*100) + ((1*10) + 0))
--> 3000 + ((1*100) + ((1*10) + 0))
--> 3000 + (100 + ((1*10) + 0))
--> 3000 + (100 + (10 + 0))
--> 3000 + (100 + 10)
--> 3000 + 110
--> 3110

If expressions. Aswith binary operators, there aremany choices of how to evaluate the subexpressions of an if expression.
Nonetheless, most programmers would expect the guard to be evaluated first, then only one of the branches to be evaluated,
because that’s how most languages work. So let’s write evaluation rules for that semantics.
First, the guard is evaluated to a value:

if e1 then e2 else e3 --> if e1' then e2 else e3
if e1 --> e1'

Then, based on the guard, the if expression is simplified to just one of the branches:

if true then e2 else e3 --> e2

if false then e2 else e3 --> e3

Let expressions. Let’s make SimPL let expressions evaluate in the same way as OCaml let expressions: first the binding
expression, then the body.
The rule that steps the binding expression is:

let x = e1 in e2 --> let x = e1' in e2
if e1 --> e1'

Next, if the binding expression has reached a value, we want to substitute that value for the name of the variable in the
body expression:

let x = v1 in e2 --> e2 with v1 substituted for x

For example, let x = 42 in x + 1 should step to 42 + 1, because substituting 42 for x in x + 1 yields 42
+ 1.
Of course, the right-hand side of that rule isn’t really an expression. It’s just giving an intuition for the expression that we
really want. We need to formally define what “substitute” means. It turns out to be rather tricky. So, rather than getting
side-tracked by it right now, let’s assume a new notation: e'{e/x}, which means, “the expression e' with e substituted
for x.” We’ll come back to that notation in the next section and give it a careful definition.
For now, we can add this rule:

let x = v1 in e2 --> e2{v1/x}

Variables. Note how the let expression rule eliminates a variable from showing up in the body expression: the variable’s
name is replaced by the value that variable should have. So, we should never reach the point of attempting to step a
variable name—assuming that the program was well-typed.
Consider OCaml: if we try to evaluate an expression with an unbound variable, what happens? Let’s check utop:
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# x;;
Error: Unbound value x

# let y = x in y;;
Error: Unbound value x

It’s an error —a type-checking error— for an expression to contain an unbound variable. Thus, any well-typed expression
e will never reach the point of attempting to step a variable name.
As with constants, we therefore don’t need to add any rules for variables. But, for clarity, we could state that x -/->.

11.3.2 Implementing the Single-Step Relation

It’s easy to turn the above definitions of --> into an OCaml function that pattern matches against AST nodes. In the code
below, recall that we have not yet finished defining substitution (i.e., subst); we’ll return to that in the next section.

(** [is_value e] is whether [e] is a value. *)
let is_value : expr -> bool = function

| Int _ | Bool _ -> true
| Var _ | Let _ | Binop _ | If _ -> false

(** [subst e v x] is [e{v/x}]. *)
let subst _ _ _ =

failwith "See next section"

(** [step] is the [-->] relation, that is, a single step of
evaluation. *)

let rec step : expr -> expr = function
| Int _ | Bool _ -> failwith "Does not step"
| Var _ -> failwith "Unbound variable"
| Binop (bop, e1, e2) when is_value e1 && is_value e2 ->
step_bop bop e1 e2

| Binop (bop, e1, e2) when is_value e1 ->
Binop (bop, e1, step e2)

| Binop (bop, e1, e2) -> Binop (bop, step e1, e2)
| Let (x, e1, e2) when is_value e1 -> subst e2 e1 x
| Let (x, e1, e2) -> Let (x, step e1, e2)
| If (Bool true, e2, _) -> e2
| If (Bool false, _, e3) -> e3
| If (Int _, _, _) -> failwith "Guard of if must have type bool"
| If (e1, e2, e3) -> If (step e1, e2, e3)

(** [step_bop bop v1 v2] implements the primitive operation
[v1 bop v2]. Requires: [v1] and [v2] are both values. *)

and step_bop bop e1 e2 = match bop, e1, e2 with
| Add, Int a, Int b -> Int (a + b)
| Mult, Int a, Int b -> Int (a * b)
| Leq, Int a, Int b -> Bool (a <= b)
| _ -> failwith "Operator and operand type mismatch"

The only new thingwe had to deal with in that implementationwas the two places where a run-time type error is discovered,
namely, in the evaluation of If (Int _, _, _) and in the very last line, in which we discover that a binary operator
is being applied to arguments of the wrong type. Type checking will guarantee that an exception never gets raised here,
but OCaml’s exhaustiveness analysis of pattern matching forces us to write a branch nonetheless. Moreover, if it ever
turned out that we had a bug in our type checker that caused ill-typed binary operator applications to be evaluated, this
exception would help us discover what was going wrong.
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11.3.3 The Multistep Relation

Now that we’ve defined -->, there’s really nothing left to do to define -->*. It’s just the reflexive transitive closure of
-->. In other words, it can be defined with just these two rules:

e -->* e

e -->* e''
if e --> e' and e' -->* e''

Of course, in implementing an interpreter, what we really want is to take as many steps as possible until the expression
reaches a value. That is, we’re interested in the sub-relation e -->* v in which the right-hand side is a not just an
expression, but a value. That’s easy to implement:

(** [eval_small e] is the [e -->* v] relation. That is,
keep applying [step] until a value is produced. *)

let rec eval_small (e : expr) : expr =
if is_value e then e
else e |> step |> eval_small

11.3.4 Defining the Big-Step Relation

Recall that our goal in defining the big-step relation ==> is to make sure it agrees with the multistep relation -->*.
Constants are easy, because they big-step to themselves:

i ==> i

b ==> b

Binary operators just big-step both of their subexpressions, then apply whatever the primitive operator is:

e1 bop e2 ==> v
if e1 ==> v1
and e2 ==> v2
and v is the result of primitive operation v1 bop v2

If expressions big step the guard, then big step one of the branches:

if e1 then e2 else e3 ==> v2
if e1 ==> true
and e2 ==> v2

if e1 then e2 else e3 ==> v3
if e1 ==> false
and e3 ==> v3

Let expressions big step the binding expression, do a substitution, and big step the result of the substitution:

let x = e1 in e2 ==> v2
if e1 ==> v1
and e2{v1/x} ==> v2

Finally, variables do not big step, for the same reason as with the small step semantics—a well-typed program will never
reach the point of attempting to evaluate a variable name:
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x =/=>

11.3.5 Implementing the Big-Step Relation

The big-step evaluation relation is, if anything, even easier to implement than the small-step relation. It just recurses over
the tree, evaluating subexpressions as required by the definition of ==>:

(** [eval_big e] is the [e ==> v] relation. *)
let rec eval_big (e : expr) : expr = match e with

| Int _ | Bool _ -> e
| Var _ -> failwith "Unbound variable"
| Binop (bop, e1, e2) -> eval_bop bop e1 e2
| Let (x, e1, e2) -> subst e2 (eval_big e1) x |> eval_big
| If (e1, e2, e3) -> eval_if e1 e2 e3

(** [eval_bop bop e1 e2] is the [e] such that [e1 bop e2 ==> e]. *)
and eval_bop bop e1 e2 = match bop, eval_big e1, eval_big e2 with

| Add, Int a, Int b -> Int (a + b)
| Mult, Int a, Int b -> Int (a * b)
| Leq, Int a, Int b -> Bool (a <= b)
| _ -> failwith "Operator and operand type mismatch"

(** [eval_if e1 e2 e3] is the [e] such that [if e1 then e2 else e3 ==> e]. *)
and eval_if e1 e2 e3 = match eval_big e1 with

| Bool true -> eval_big e2
| Bool false -> eval_big e3
| _ -> failwith "Guard of if must have type bool"

It’s good engineering practice to factor out functions for each of the pieces of syntax, as we did above, unless the imple-
mentation can fit on just a single line in the main pattern match inside eval_big.

11.3.6 Substitution in SimPL

In the previous section, we posited a new notation e'{e/x}, meaning “the expression e' with e substituted for x.” The
intuition is that anywhere x appears in e', we should replace x with e.
Let’s give a careful definition of substitution for SimPL. For the most part, it’s not too hard.
Constants have no variables appearing in them (e.g., x cannot syntactically occur in 42), so substitution leaves them
unchanged:

i{e/x} = i
b{e/x} = b

For binary operators and if expressions, all that substitution needs to do is to recurse inside the subexpressions:

(e1 bop e2){e/x} = e1{e/x} bop e2{e/x}
(if e1 then e2 else e3){e/x} = if e1{e/x} then e2{e/x} else e3{e/x}

Variables start to get a little trickier. There are two possibilities: either we encounter the variable x, which means we
should do the substitution, or we encounter some other variable with a different name, say y, in which case we should not
do the substitution:
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x{e/x} = e
y{e/x} = y

The first of those cases, x{e/x} = e, is important to note: it’s where the substitution operation finally takes place.
Suppose, for example, we were trying to figure out the result of (x + 42){1/x}. Using the definitions from above,

(x + 42){1/x}
= x{1/x} + 42{1/x} by the bop case
= 1 + 42{1/x} by the first variable case
= 1 + 42 by the integer case

Note that we are not defining the --> relation right now. That is, none of these equalities represents a step of evaluation.
To make that concrete, suppose we were evaluating let x = 1 in x + 42:

let x = 1 in x + 42
--> (x + 42){1/x}

= 1 + 42
--> 43

There are two single steps here, one for the let and the other for +. But we consider the substitution to happen all at
once, as part of the step that let takes. That’s why we write (x + 42){1/x} = 1 + 42, not (x + 42){1/x}
--> 1 + 42.
Finally, let expressions also have two cases, depending on the name of the bound variable:

(let x = e1 in e2){e/x} = let x = e1{e/x} in e2
(let y = e1 in e2){e/x} = let y = e1{e/x} in e2{e/x}

Both of those cases substitute e for x inside the binding expression e1. That’s to ensure that expressions like let x =
42 in let y = x in y would evaluate correctly: x needs to be in scope inside the binding y = x, so we have to
do a substitution there regardless of the name being bound.
But the first case does not do a substitution inside e2, whereas the second case does. That’s so we stop substituting when
we reach a shadowed name. Consider let x = 5 in let x = 6 in x. We know it would evaluate to 6 in
OCaml because of shadowing. Here’s how it would evaluate with our definitions of SimPL:

let x = 5 in let x = 6 in x
--> (let x = 6 in x){5/x}

= let x = 6{5/x} in x ***
= let x = 6 in x

--> x{6/x}
= 6

On the line tagged *** above, we’ve stopped substituting inside the body expression, because we reached a shadowed
variable name. If we had instead kept going inside the body, we’d get a different result:

let x = 5 in let x = 6 in x
--> (let x = 6 in x){5/x}

= let x = 6{5/x} in x{5/x} ***WRONG***
= let x = 6 in 5

--> 5{6/x}
= 5

Example 1:
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let x = 2 in x + 1
--> (x + 1){2/x}

= 2 + 1
--> 3

Example 2:

let x = 0 in (let x = 1 in x)
--> (let x = 1 in x){0/x}

= (let x = 1{0/x} in x)
= (let x = 1 in x)

--> x{1/x}
= 1

Example 3:

let x = 0 in x + (let x = 1 in x)
--> (x + (let x = 1 in x)){0/x}

= x{0/x} + (let x = 1 in x){0/x}
= 0 + (let x = 1{0/x} in x)
= 0 + (let x = 1 in x)

--> 0 + x{1/x}
= 0 + 1

--> 1

11.3.7 Implementing Substitution

The definitions above are easy to turn into OCaml code. Note that, although we write v below, the function is actually
able to substitute any expression for a variable, not just a value. The interpreter will only ever call this function on a value,
though.

(** [subst e v x] is [e] with [v] substituted for [x], that
is, [e{v/x}]. *)

let rec subst e v x = match e with
| Var y -> if x = y then v else e
| Bool _ -> e
| Int _ -> e
| Binop (bop, e1, e2) -> Binop (bop, subst e1 v x, subst e2 v x)
| Let (y, e1, e2) ->
let e1' = subst e1 v x in
if x = y
then Let (y, e1', e2)
else Let (y, e1', subst e2 v x)

| If (e1, e2, e3) ->
If (subst e1 v x, subst e2 v x, subst e3 v x)
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11.3.8 The SimPL Interpreter is Done!

We’ve completed developing our SimPL interpreter. Recall that the finished interpreter can be downloaded here:
simpl.zip. It includes some rudimentary test cases, as well as makefile targets that you will find helpful.

11.3.9 Capture-Avoiding Substitution

The definition of substitution for SimPL was a little tricky but not too complicated. It turns out, though, that in general,
the definition gets more complicated.
Let’s consider this tiny language:

e ::= x | e1 e2 | fun x -> e
v ::= fun x -> e
x ::= <identifiers>

This syntax is also known as the lambda calculus. There are only three kinds of expressions in it: variables, function
application, and anonymous functions. The only values are anonymous functions. The language isn’t even typed. Yet, one
of its most remarkable properties is that it is computationally universal: it can express any computable function. (To learn
more about that, read about the Church-Turing Hypothesis.)
There are several ways to define an evaluation semantics for the lambda calculus. Perhaps the simplest way—also closest
to OCaml—uses the following rule:

e1 e2 ==> v
if e1 ==> fun x -> e
and e2 ==> v2
and e{v2/x} ==> v

This rule is the only rule we need: no other rules are required. This rule is also known as the call by value semantics,
because it requires arguments to be reduced to values before a function can be applied. If that seems obvious, it’s because
you’re used to it from OCaml.
However, other semantics are certainly possible. For example, Haskell uses a variant called call by name, with the single
rule:

e1 e2 ==> v
if e1 ==> fun x -> e
and e{e2/x} ==> v

With call by name, e2 does not have to be reduced to a value; that can lead to greater efficiency if the value of e2 is
never needed.
Now we need to define the substitution operation for the lambda calculus. We’d like a definition that works for either call
by name or call by value. Inspired by our definition for SimPL, here’s the beginning of a definition:

x{e/x} = e
y{e/x} = y
(e1 e2){e/x} = e1{e/x} e2{e/x}

The first two lines are exactly how we defined variable substitution in SimPL. The next line resembles how we defined
binary operator substitution; we just recurse into the subexpressions.
What about substitution in a function? In SimPL, we stopped substituting when we reached a bound variable of the same
name; otherwise, we proceeded. In the lambda calculus, that idea would be stated as follows:
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(fun x -> e'){e/x} = fun x -> e'
(fun y -> e'){e/x} = fun y -> e'{e/x}

Perhaps surprisingly, that definition turns out to be incorrect. Here’s why: it violates the Principle of Name Irrelevance.
Suppose we were attempting this substitution:

(fun z -> x){z/x}

The result would be:

fun z -> x{z/x}
= fun z -> z

And, suddenly, a function that was not the identity function becomes the identity function. Whereas, if we had attempted
this substitution:

(fun y -> x){z/x}

The result would be:

fun y -> x{z/x}
= fun y -> z

Which is not the identity function. So our definition of substitution inside anonymous functions is incorrect, because it
captures variables. A variable name being substituted inside an anonymous function can accidentally be “captured” by the
function’s argument name.
Note that we never had this problem in SimPL, in part because SimPL was typed. The function fun y -> z if applied
to any argument would just return z, which is an unbound variable. But the lambda calculus is untyped, so we can’t rely
on typing to rule out this possibility here.
So the question becomes, how do we define substitution so that it gets the right answer, without capturing variables? The
answer is called capture-avoiding substitution, and a correct definition of it eluded mathematicians for centuries.
A correct definition is as follows:

(fun x -> e'){e/x} = fun x -> e'
(fun y -> e'){e/x} = fun y -> e'{e/x} if y is not in FV(e)

where FV(e) means the “free variables” of e, i.e., the variables that are not bound in it, and is defined as follows:

FV(x) = {x}
FV(e1 e2) = FV(e1) + FV(e2)
FV(fun x -> e) = FV(e) - {x}

and + means set union, and - means set difference.
That definition prevents the substitution (fun z -> x){z/x} from occurring, because z is in FV(z).
Unfortunately, because of the side-condition y is not in FV(e), the substitution operation is now partial: there
are times, like the example we just gave, where it cannot be applied.
That problem can be solved by changing the names of variables: if we detect that a partiality has been encountered, we can
change the name of the function’s argument. For example, when (fun z -> x){z/x} is encountered, the function’s
argument could be replaced with a new name w that doesn’t occur anywhere else, yielding (fun w -> x){z/x}.
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(And if z occurred anywhere in the body, it would be replaced by w, too.) This is replacement, not substitution: absolutely
anywhere we see z, we replace it with w. Then the substitution may proceed and correctly produce fun w -> z.
The tricky part of that is how to pick a new name that doesn’t occur anywhere else, that is, how to pick a fresh name.
Here are three strategies:

1. Pick a new variable name, check whether is fresh or not, and if not, try again, until that succeeds. For example, if
trying to replace z, you might first try z', then z'', etc.

2. Augment the evaluation relation to maintain a stream (i.e., infinite list) of unused variable names. Each time you
need a new one, take the head of the stream. But you have to be careful to use the tail of the stream anytime
after that. To guarantee that they are unused, reserve some variable names for use by the interpreter alone, and
make them illegal as variable names chosen by the programmer. For example, you might decide that programmer
variable names may never start with the character $, then have a stream <$x1, $x2, $x3, ...> of fresh
names.

3. Use an imperative counter to simulate the stream from the previous strategy. For example, the following function
is guaranteed to return a fresh variable name each time it is called:

let gensym =
let counter = ref 0 in
fun () -> incr counter; "$x" ^ string_of_int !counter

The name gensym is traditional for this kind of function. It comes from LISP, and shows up throughout compiler
implementations. It means generate a fresh symbol.

There is a complete implementation of an interpreter for the lambda calculus, including capture-avoiding substitution,
that you can download: lambda-subst.zip. It uses the gensym strategy from above to generate fresh names. There is a
definition named strategy in main.ml that you can use to switch between call-by-value and call-by-name.

11.3.10 Core OCaml

Let’s now upgrade from SimPL and the lambda calculus to a larger language that we call Core OCaml. Here is its syntax
in BNF:

e ::= x | e1 e2 | fun x -> e
| i | b | e1 bop e2
| (e1, e2) | fst e | snd e
| Left e | Right e
| match e with Left x1 -> e1 | Right x2 -> e2
| if e1 then e2 else e3
| let x = e1 in e2

bop ::= + | - | * | <=

x ::= <identifiers>

i ::= <integers>

b ::= true | false

v ::= fun x -> e | i | b | (v1, v2) | Left v | Right v

The binary operators we have specified in bop are meant to be representative, not exhaustive. We could add <, =, and
others.
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To keep tuples simple in this core model, we represent them with only two components (i.e., they are pairs). A longer
tuple could be coded up with nested pairs. For example, (1, 2, 3) in OCaml could be (1, (2, 3)) in this core
language.
Also, to keep variant types simple in this core model, we represent themwith only two constructors, which we name Left
and Right. A variant with more constructors could be coded up with nested applications of those two constructors. Since
we have only two constructors, match expressions need only two branches. One caution in reading the BNF above: the
occurrence of | in the match expression just before the Right constructor denotes syntax, not metasyntax.
There are a few important OCaml constructs omitted from this core language, including recursive functions, exceptions,
mutability, and modules. Types are also missing; Core OCaml does not have any type checking. Nonetheless, there is
enough in this core language to keep us entertained.

11.3.11 Evaluating Core OCaml in the Substitution Model

Let’s define the small and big step relations for Core OCaml. To be honest, there won’t be much that’s surprising at this
point; we’ve seen just about everything already in SimPL and in the lambda calculus.
Small-Step Relation. Here is the fragment of Core OCaml we already know from SimPL:

e1 bop e2 --> e1' bop e2
if e1 --> e1'

v1 bop e2 --> v1 bop e2'
if e2 --> e2'

v1 bop v2 --> v3
where v3 is the result of applying primitive operation bop
to v1 and v2

if e1 then e2 else e3 --> if e1' then e2 else e3
if e1 --> e1'

if true then e2 else e3 --> e2

if false then e2 else e3 --> e3

let x = e1 in e2 --> let x = e1' in e2
if e1 --> e1'

let x = v in e2 --> e2{v/x}

Here’s the fragment of Core OCaml that corresponds to the lambda calculus:

e1 e2 --> e1' e2
if e1 --> e1'

v1 e2 --> v1 e2'
if e2 --> e2'

(fun x -> e) v2 --> e{v2/x}

And here are the new parts of Core OCaml. First, pairs evaluate their first component, then their second component:

(e1, e2) --> (e1', e2)
if e1 --> e1'

(continues on next page)
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(v1, e2) --> (v1, e2')
if e2 --> e2'

fst e --> fst e'
if e --> e'

snd e --> snd e'
if e --> e'

fst (v1, v2) --> v1

snd (v1, v2) --> v2

Constructors evaluate the expression they carry:

Left e --> Left e'
if e --> e'

Right e --> Right e'
if e --> e'

Pattern matching evaluates the expression being matched, then reduces to one of the branches:

match e with Left x1 -> e1 | Right x2 -> e2
--> match e' with Left x1 -> e1 | Right x2 -> e2

if e --> e'

match Left v with Left x1 -> e1 | Right x2 -> e2
--> e1{v/x1}

match Right v with Left x1 -> e1 | Right x2 -> e2
--> e2{v/x2}

Substitution. We also need to define the substitution operation for Core OCaml. Here is what we already know from
SimPL and the lambda calculus:

i{v/x} = i

b{v/x} = b

(e1 bop e2) {v/x} = e1{v/x} bop e2{v/x}

(if e1 then e2 else e3){v/x}
= if e1{v/x} then e2{v/x} else e3{v/x}

(let x = e1 in e2){v/x} = let x = e1{v/x} in e2

(let y = e1 in e2){v/x} = let y = e1{v/x} in e2{v/x}
if y not in FV(v)

x{v/x} = v

y{v/x} = y

(continues on next page)
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(e1 e2){v/x} = e1{v/x} e2{v/x}

(fun x -> e'){v/x} = (fun x -> e')

(fun y -> e'){v/x} = (fun y -> e'{v/x})
if y not in FV(v)

Note that we’ve now added the requirement of capture-avoiding substitution to the definitions for let and fun: they
both require y not to be in the free variables of v. We therefore need to define the free variables of an expression:

FV(x) = {x}
FV(e1 e2) = FV(e1) + FV(e2)
FV(fun x -> e) = FV(e) - {x}
FV(i) = {}
FV(b) = {}
FV(e1 bop e2) = FV(e1) + FV(e2)
FV((e1,e2)) = FV(e1) + FV(e2)
FV(fst e1) = FV(e1)
FV(snd e2) = FV(e2)
FV(Left e) = FV(e)
FV(Right e) = FV(e)
FV(match e with Left x1 -> e1 | Right x2 -> e2)
= FV(e) + (FV(e1) - {x1}) + (FV(e2) - {x2})

FV(if e1 then e2 else e3) = FV(e1) + FV(e2) + FV(e3)
FV(let x = e1 in e2) = FV(e1) + (FV(e2) - {x})

Finally, we define substitution for the new syntactic forms in Core OCaml. Expressions that do not bind variables are easy
to handle:

(e1,e2){v/x} = (e1{v/x}, e2{v/x})

(fst e){v/x} = fst (e{v/x})

(snd e){v/x} = snd (e{v/x})

(Left e){v/x} = Left (e{v/x})

(Right e){v/x} = Right (e{v/x})

Match expressions take a little more work, just like let expressions and anonymous functions, to make sure we get capture-
avoidance correct:

(match e with Left x1 -> e1 | Right x2 -> e2){v/x}
= match e{v/x} with Left x1 -> e1{v/x} | Right x2 -> e2{v/x}

if ({x1,x2} intersect FV(v)) = {}

(match e with Left x -> e1 | Right x2 -> e2){v/x}
= match e{v/x} with Left x -> e1 | Right x2 -> e2{v/x}

if ({x2} intersect FV(v)) = {}

(match e with Left x1 -> e1 | Right x -> e2){v/x}
= match e{v/x} with Left x1 -> e1{v/x} | Right x -> e2

if ({x1} intersect FV(v)) = {}

(match e with Left x -> e1 | Right x -> e2){v/x}

(continues on next page)
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= match e{v/x} with Left x -> e1 | Right x -> e2

For typical implementations of programming languages, we don’t have to worry about capture-avoiding substitution be-
cause we only evaluate well-typed expressions, which don’t have free variables. But for more exotic programming lan-
guages, it can be necessary to evaluate open expressions. In these cases, we’d need all the extra conditions about free
variables that we gave above.

11.3.12 Big-Step Relation

At this point there aren’t any new concepts remaining to introduce. We can just give the rules:

e1 e2 ==> v
if e1 ==> fun x -> e
and e2 ==> v2
and e{v2/x} ==> v

fun x -> e ==> fun x -> e

i ==> i

b ==> b

e1 bop e2 ==> v
if e1 ==> v1
and e2 ==> v2
and v is the result of primitive operation v1 bop v2

(e1, e2) ==> (v1, v2)
if e1 ==> v1
and e2 ==> v2

fst e ==> v1
if e ==> (v1, v2)

snd e ==> v2
if e ==> (v1, v2)

Left e ==> Left v
if e ==> v

Right e ==> Right v
if e ==> v

match e with Left x1 -> e1 | Right x2 -> e2 ==> v
if e ==> Left v1
and e1{v1/x1} ==> v

match e with Left x1 -> e1 | Right x2 -> e2 ==> v
if e ==> Right v2
and e2{v2/x2} ==> v

if e1 then e2 else e3 ==> v
if e1 ==> true
and e2 ==> v

(continues on next page)
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if e1 then e2 else e3 ==> v
if e1 ==> false
and e3 ==> v

let x = e1 in e2 ==> v
if e1 ==> v1
and e2{v1/x} ==> v

11.4 Environment Model

So far we’ve been using the substitution model to evaluate programs. It’s a great mental model for evaluation, and it’s
commonly used in programming languages theory.
But when it comes to implementation, the substitution model is not the best choice. It’s too eager: it substitutes for every
occurrence of a variable, even if that occurrence will never be needed. For example, let x = 42 in e will require
crawling over all of e, which might be a very large expression, even if x never occurs in e, or even if x occurs only inside
a branch of an if expression that never ends up being evaluated.
For sake of efficiency, it would be better to substitute lazily: only when the value of a variable is needed should the
interpreter have to do the substitution. That’s the key idea behind the environment model. In this model, there is a data
structure called the dynamic environment, or just “environment” for short, that is a dictionary mapping variable names to
values. Whenever the value of a variable is needed, it’s looked up in that dictionary.
To account for the environment, the evaluation relation needs to change. Instead of e --> e' or e ==> v, both of
which are binary relations, we now need a ternary relation, which is either

• <env, e> --> e', or
• <env, e> ==> v,

where env denotes the environment, and <env, e> is called a machine configuration. That configuration represents
the state of the computer as it evaluates a program: env represents a part of the computer’s memory (the binding of
variables to values), and e represents the program.
As notation, let:

• {} represent the empty environment,
• {x1:v1, x2:v2, ...} represent the environment that binds x1 to v1, etc.,
• env[x -> v] represent the environment env with the variable x additionally bound to the value v, and
• env(x) represent the binding of x in env.

If we wanted a more mathematical notation we would write ↦ instead of -> in env[x -> v], but we’re aiming for
notation that is easily typed on a standard keyboard.
We’ll concentrate in the rest of this chapter on the big-step version of the environment model. It would of course be
possible to define a small-step version, too.
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11.4.1 Evaluating the Lambda Calculus in the Environment Model

Recall that the lambda calculus is the fragment of a functional language involving functions and application:

e ::= x | e1 e2 | fun x -> e

v ::= fun x -> e

Let’s explore how to define a big-step evaluation relation for the lambda calculus in the environment model. The rule for
variables just says to look up the variable name in the environment:

<env, x> ==> env(x)

This rule for functions says that an anonymous function evaluates just to itself. After all, functions are values:

<env, fun x -> e> ==> fun x -> e

Finally, this rule for application says to evaluate the left-hand side e1 to a function fun x -> e, the right-hand side to
a value v2, then to evaluate the body e of the function in an extended environment that maps the function’s argument x
to v2:

<env, e1 e2> ==> v
if <env, e1> ==> fun x -> e
and <env, e2> ==> v2
and <env[x -> v2], e> ==> v

Seems reasonable, right? The problem is, it’s wrong. At least, it’s wrong if you want evaluation to behave the same as
OCaml. Or, to be honest, nearly any other modern language.
It will be easier to explain why it’s wrong if we add two more language features: let expressions and integer constants.
Integer constants would evaluate to themselves:

<env, i> ==> i

As for let expressions, recall that we don’t actually need them, because let x = e1 in e2 can be rewritten as (fun
x -> e2) e1. Nonetheless, their semantics would be:

<env, let x = e1 in e2> ==> v
if <env, e1> ==> v1
and <env[x -> v1], e2> ==> v

Which is a rule that really just follows from the other rules above, using that rewriting.
What would this expression evaluate to?

let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0

According to our semantics thus far, it would evaluate as follows:
• let x = 1 would produce the environment {x:1}.
• let f = fun y -> x would produce the environment {x:1, f:(fun y -> x)}.
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• let x = 2 would produce the environment {x:2, f:(fun y -> x)}. Note how the binding of x to 1 is
shadowed by the new binding.

• Now we would evaluate <{x:2, f:(fun y -> x)}, f 0>:

<{x:2, f:(fun y -> x)}, f 0> ==> 2
because <{x:2, f:(fun y -> x)}, f> ==> fun y -> x
and <{x:2, f:(fun y -> x)}, 0> ==> 0
and <{x:2, f:(fun y -> x)}[y -> 0], x> ==> 2
because <{x:2, f:(fun y -> x), y:0}, x> ==> 2

• The result is therefore 2.
But according to utop (and the substitution model), it evaluates as follows:

# let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0;;

- : int = 1

And the result is therefore 1. Obviously, 1 and 2 are different answers!
What went wrong?? It has to do with scope.

11.4.2 Lexical vs. Dynamic Scope

There are two different ways to understand the scope of a variable: variables can be dynamically scoped or lexically
scoped. It all comes down to the environment that is used when a function body is being evaluated:

• With the rule of dynamic scope, the body of a function is evaluated in the current dynamic environment at the
time the function is applied, not the old dynamic environment that existed at the time the function was defined.

• With the rule of lexical scope, the body of a function is evaluated in the old dynamic environment that existed at
the time the function was defined, not the current environment when the function is applied.

The rule of dynamic scope is what our semantics, above, implemented. Let’s look back at the semantics of function
application:

<env, e1 e2> ==> v
if <env, e1> ==> fun x -> e
and <env, e2> ==> v2
and <env[x -> v2], e> ==> v

Note how the body e is being evaluated in the same environment env as when the function is applied. In the example
program

let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0

that means that f is evaluated in an environment in which x is bound to 2, because that’s the most recent binding of x.
But OCaml implements the rule of lexical scope, which coincides with the substitution model. With that rule, x is bound
to 1 in the body of f when f is defined, and the later binding of x to 2 doesn’t change that fact.
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The consensus after decades of experience with programming language design is that lexical scope is the right choice.
Perhaps the main reason for that is that lexical scope supports the Principle of Name Irrelevance. Recall, that principle
says that the name of a variable shouldn’t matter to the meaning of program, as long as the name is used consistently.
Nonetheless, dynamic scope is useful in some situations. Some languages use it as the norm (e.g., Emacs LISP, LaTeX),
and some languages have special ways to do it (e.g., Perl, Racket). But these days, most languages just don’t have it.
There is one language feature that modern languages do have that resembles dynamic scope, and that is exceptions.
Exception handling resembles dynamic scope, in that raising an exception transfers control to the “most recent” exception
handler, just like how dynamic scope uses the “most recent” binding of variable.

11.4.3 A Second Attempt at Evaluating the Lambda Calculus in the Environment
Model

The question then becomes, how do we implement lexical scope? It seems to require time travel, because function bodies
need to be evaluated in old dynamic environment that have long since disappeared.
The answer is that the language implementation must arrange to keep old environments around. And that is indeed what
OCaml and other languages must do. They use a data structure called a closure for this purpose.
A closure has two parts:

• a code part, which contains a function fun x -> e, and
• an environment part, which contains the environment env at the time that function was defined.

You can think of a closure as being like a pair, except that there’s no way to directly write a closure in OCaml source
code, and there’s no way to destruct the pair into its components in OCaml source code. The pair is entirely hidden from
you by the language implementation.
Let’s notate a closure as (| fun x -> e, env |). The delimiters (| ... |) are meant to evoke an OCaml
pair, but of course they are not legal OCaml syntax.
Using that notation, we can re-define the evaluation relation as follows:
The rule for functions now says that an anonymous function evaluates to a closure:

<env, fun x -> e> ==> (| fun x -> e, env |)

That rule saves the defining environment as part of the closure, so that it can be used at some future point.
The rule for application says to use that closure:

<env, e1 e2> ==> v
if <env, e1> ==> (| fun x -> e, defenv |)
and <env, e2> ==> v2
and <defenv[x -> v2], e> ==> v

That rule uses the closure’s environmentdefenv (whose name is meant to suggest the “defining environment”) to evaluate
the function body e.
The derived rule for let expressions remains unchanged:

<env, let x = e1 in e2> ==> v
if <env, e1> ==> v1
and <env[x -> v1], e2> ==> v

That’s because the defining environment for the body e2 is the same as the current environment env when the let
expression is being evaluated.
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11.4.4 An Implementation of the Lambda Calculus in the Environment Model

You can download a complete implementation of the above two lambda calculus semantics: lambda-env.zip. In main.
ml, there is a definition named scope that you can use to switch between lexical and dynamic scope.

11.4.5 Evaluating Core OCaml in the Environment Model

There isn’t anything new in the (big step) environment model semantics of Core OCaml, now that we know about closures,
but for sake of completeness let’s state it anyway.
Syntax.

e ::= x | e1 e2 | fun x -> e
| i | b | e1 bop e2
| (e1,e2) | fst e1 | snd e2
| Left e | Right e
| match e with Left x1 -> e1 | Right x2 -> e2
| if e1 then e2 else e3
| let x = e1 in e2

Semantics.
We’ve already seen the semantics of the lambda calculus fragment of Core OCaml:

<env, x> ==> v
if env(x) = v

<env, e1 e2> ==> v
if <env, e1> ==> (| fun x -> e, defenv |)
and <env, e2> ==> v2
and <defenv[x -> v2], e> ==> v

<env, fun x -> e> ==> (|fun x -> e, env|)

Evaluation of constants ignores the environment:

<env, i> ==> i

<env, b> ==> b

Evaluation of most other language features just uses the environment without changing it:

<env, e1 bop e2> ==> v
if <env, e1> ==> v1
and <env, e2> ==> v2
and v is the result of applying the primitive operation bop to v1 and v2

<env, (e1, e2)> ==> (v1, v2)
if <env, e1> ==> v1
and <env, e2> ==> v2

<env, fst e> ==> v1
if <env, e> ==> (v1, v2)

<env, snd e> ==> v2

(continues on next page)
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if <env, e> ==> (v1, v2)

<env, Left e> ==> Left v
if <env, e> ==> v

<env, Right e> ==> Right v
if <env, e> ==> v

<env, if e1 then e2 else e3> ==> v2
if <env, e1> ==> true
and <env, e2> ==> v2

<env, if e1 then e2 else e3> ==> v3
if <env, e1> ==> false
and <env, e3> ==> v3

Finally, evaluation of binding constructs (i.e., match and let expression) extends the environment with a new binding:

<env, match e with Left x1 -> e1 | Right x2 -> e2> ==> v1
if <env, e> ==> Left v
and <env[x1 -> v], e1> ==> v1

<env, match e with Left x1 -> e1 | Right x2 -> e2> ==> v2
if <env, e> ==> Right v
and <env[x2 -> v], e2> ==> v2

<env, let x = e1 in e2> ==> v2
if <env, e1> ==> v1
and <env[x -> v1], e2> ==> v2

11.5 Type Checking

Earlier, we skipped over the type checking phase. Let’s come back to that now. After lexing and parsing, the next phase
of compilation is semantic analysis, and the primary task of semantic analysis is type checking.
A type system is a mathematical description of how to determine whether an expression is ill-typed or well-typed, and in
the latter case, what the type of the expression is. A type checker is a program that implements a type system, i.e., that
implements the static semantics of the language.
Commonly, a type system is formulated as a ternary relationHasType(Γ, 𝑒, 𝑡), which means that expression 𝑒 has type 𝑡 in
static environment Γ. A static environment, aka typing context, is a map from identifiers to types. The static environment is
used to record what variables are in scope, and what their types are. The use of the Greek letter Γ for static environments
is traditional.
That ternary relation HasType is typically written with infix notation, though, as Γ ⊢ 𝑒 ∶ 𝑡. You can read the turnstile
symbol ⊢ as “proves” or “shows”, i.e., the static environment Γ shows that 𝑒 has type 𝑡.
Let’s make that notation a little friendlier by eliminating the Greek and the math typesetting. We’ll just write env |-
e : t to mean that static environment env shows that e has type t. We previously used env to mean a dynamic
environment in the big-step relation ==>. Since it’s always possible to see whether we’re using the ==> or |- relation,
the meaning of env as either a dynamic or static environment is always discernible.
Let’s write {} for the empty static environment, and x:t to mean that x is bound to t. So, {foo:int, bar:bool}
would be the static environment is which foo has type int and bar has type bool. A static environment may bind an
identifier at most once. We’ll write env[x -> t] to mean a static environment that contains all the bindings of env,
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and also binds x to t. If x was already bound in env, then that old binding is replaced by the new binding to t in env[x
-> t]. As with dynamic environments, if we wanted a more mathematical notation we would write ↦ instead of -> in
env[x -> v], but we’re aiming for notation that is easily typed on a standard keyboard.
With all that machinery, we can at last define what it means to be well-typed: An expression e is well-typed in static
environment env if there exists a type t for which env |- e : t. The goal of a type checker is thus to find such a
type t, starting from some initial static environment.
It’s convenient to pretend that the initial static environment is empty. But in practice, it’s rare that a language truly uses
the empty static environment to determine whether a program is well-typed. In OCaml, for example, there are many
built-in identifiers that are always in scope, such as everything in the Stdlib module.

11.5.1 A Type System for SimPL

Recall the syntax of SimPL:

e ::= x | i | b | e1 bop e2
| if e1 then e2 else e3
| let x = e1 in e2

bop ::= + | * | <=

Let’s define a type system env |- e : t for SimPL. The only types in SimPL are integers and booleans:

t ::= int | bool

To define |-, we’ll invent a set of typing rules that specify what the type of an expression is based on the types of its
subexpressions. In other words, |- is an inductively-defined relation, as can be learned about in a discrete math course.
So, it has some base cases, and some inductive cases.
For the base cases, an integer constant has type int in any static environment whatsoever, a Boolean constant likewise
always has type bool, and a variable has whatever type the static environment says it should have. Here are the typing
rules that express those ideas:

env |- i : int
env |- b : bool
{x : t, ...} |- x : t

The remaining syntactic forms are inductive cases.
Let. As we already know from OCaml, we type check the body of a let expression using a scope that is extended with a
new binding.

env |- let x = e1 in e2 : t2
if env |- e1 : t1
and env[x -> t1] |- e2 : t2

The rule says that let x = e1 in e2 has type t2 in static environment env, but only if certain conditions hold.
The first condition is that e1 has type t1 in env. The second is that e2 has type t2 in a new static environment, which
is env extended to bind x to t1.
Binary operators. We’ll need a couple different rules for binary operators.

env |- e1 bop e2 : int
if bop is + or *

(continues on next page)
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and env |- e1 : int
and env |- e2 : int

env |- e1 <= e2 : bool
if env |- e1 : int
and env |- e2 : int

If. Just like OCaml, an if expression must have a Boolean guard, and its two branches must have the same type.

env |- if e1 then e2 else e3 : t
if env |- e1 : bool
and env |- e2 : t
and env |- e3 : t

11.5.2 A Type Checker for SimPL

Let’s implement a type checker for SimPL, based on the type systemwe defined in the previous section. You can download
the completed type checker as part of the SimPL interpreter: simpl.zip
We need a variant to represent types:

type typ =
| TInt
| TBool

The natural name for that variant would of course have been “type” not “typ”, but the former is already a keyword in
OCaml. We have to prefix the constructors with “T” to disambiguate them from the constructors of the expr type,
which include Int and Bool.
Let’s introduce a small signature for static environments, based on the abstractions we’ve introduced so far: the empty
static environment, looking up a variable, and extending a static environment.

module type StaticEnvironment = sig
(** [t] is the type of a static environment. *)
type t

(** [empty] is the empty static environment. *)
val empty : t

(** [lookup env x] gets the binding of [x] in [env].
Raises: [Failure] if [x] is not bound in [env]. *)

val lookup : t -> string -> typ

(** [extend env x ty] is [env] extended with a binding
of [x] to [ty]. *)

val extend : t -> string -> typ -> t
end

It’s easy to implement that signature with an association list.

module StaticEnvironment : StaticEnvironment = struct
type t = (string * typ) list

(continues on next page)
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let empty = []

let lookup env x =
try List.assoc x env
with Not_found -> failwith "Unbound variable"

let extend env x ty =
(x, ty) :: env

end

Now we can implement the typing relation |-. We’ll do that by writing a function typeof :
StaticEnvironment.t -> expr -> typ, such that typeof env e = t if and only if env |- e
: t. Note that the typeof function produces the type as output, so the function is actually inferring the type! That
inference is easy for SimPL; it would be considerably harder for larger languages.
Let’s start with the base cases:

open StaticEnvironment

(** [typeof env e] is the type of [e] in static environment [env].
Raises: [Failure] if [e] is not well-typed in [env]. *)

let rec typeof env = function
| Int _ -> TInt
| Bool _ -> TBool
| Var x -> lookup env x
...

Note how the implementation of typeof so far is based on the rules we previously defined for |-. In particular:
• typeof is a recursive function, just as |- is an inductive relation.
• The base cases for the recursion of typeof are the same as the base cases for |-.

Also note how the implementation of typeof differs in one major way from the definition of |-: error handling. The
type system didn’t say what to do about errors; rather, it just defined what it meant to be well-typed. The type checker, on
the other hand, needs to take action and report ill-typed programs. Our typeof function does that by raising exceptions.
The lookup function, in particular, will raise an exception if we attempt to lookup a variable that hasn’t been bound in
the static environment.
Let’s continue with the recursive cases:

...
| Let (x, e1, e2) -> typeof_let env x e1 e2
| Binop (bop, e1, e2) -> typeof_bop env bop e1 e2
| If (e1, e2, e3) -> typeof_if env e1 e2 e3

We’re factoring out a helper function for each branch for the sake of keeping the pattern match readable. Each of the
helpers directly encodes the ideas of the |- rules, with error handling added.

and typeof_let env x e1 e2 =
let t1 = typeof env e1 in
let env' = extend env x t1 in
typeof env' e2

and typeof_bop env bop e1 e2 =
let t1, t2 = typeof env e1, typeof env e2 in

(continues on next page)
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match bop, t1, t2 with
| Add, TInt, TInt
| Mult, TInt, TInt -> TInt
| Leq, TInt, TInt -> TBool
| _ -> failwith "Operator and operand type mismatch"

and typeof_if env e1 e2 e3 =
if typeof env e1 = TBool
then begin
let t2 = typeof env e2 in
if t2 = typeof env e3 then t2
else failwith "Branches of if must have same type"

end
else failwith "Guard of if must have type bool"

Note how the recursive calls in the implementation of typeof occur exactly in the same places where the definition of
|- is inductive.
Finally, we can implement a function to check whether an expression is well-typed:

(** [typecheck e] checks whether [e] is well-typed in
the empty static environment. Raises: [Failure] if not. *)

let typecheck e =
ignore (typeof empty e)

11.5.3 Type Safety

What is the purpose of a type system? There might be many, but one of the primary purposes is to ensure that certain
run-time errors don’t occur. Now that we know how to formalize type systems with the |- relation and evaluation with
the --> relation, we can make that idea precise.
The goals of a language designer usually include ensuring that these two properties, which establish a relationship between
|- and -->, both hold:

• Progress: If an expression is well-typed, then either it is already a value, or it can take at least one step. We can
formalize that as, “for all e, if there exists a t such that {} |- e : t, then e is a value, or there exists an e'
such that e --> e'.”

• Preservation: If an expression is well-typed, then if the expression steps, the new expression has the same type as
the old expression. Formally, “for all e and t such that {} |- e : t, if there exists an e' such that e -->
e', then {} |- e' : t.”

Put together, progress plus preservation imply that evaluation of a well-typed expression can never get stuck, meaning it
reaches a non-value that cannot take a step. This property is known as type safety.
For example, 5 + true would get stuck using the SimPL evaluation relation, because the primitive + operation cannot
accept a Boolean as an operand. But the SimPL type system won’t accept that program, thus saving us from ever reaching
that situation.
Looking back at the SimPL we wrote, everywhere in the implementation of step where we raised an exception was a
place where evaluation would get stuck. But the type system guarantees those exceptions will never occur.
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11.6 Type Inference

OCaml and Java are statically typed languages, meaning every binding has a type that is determined at compile time—that
is, before any part of the program is executed. The type-checker is a compile-time procedure that either accepts or rejects
a program. By contrast, JavaScript and Ruby are dynamically-typed languages; the type of a binding is not determined
ahead of time. Computations like binding 42 to x and then treating x as a string therefore either result in run-time errors,
or run-time conversion between types.
Unlike Java, OCaml is implicitly typed, meaning programmers rarely need to write down the types of bindings. This is often
convenient, especially with higher-order functions. (Although some people disagree as to whether it makes code easier or
harder to read). But implicit typing in no way changes the fact that OCaml is statically typed. Rather, the type-checker
has to be more sophisticated because it must infer what the type annotations “would have been” had the programmers
written all of them. In principle, type inference and type checking could be separate procedures (the inferencer could
figure out the types then the checker could determine whether the program is well-typed), but in practice they are often
merged into a single procedure called type reconstruction.

11.6.1 OCaml Type Reconstruction

At a very high level, OCaml’s type reconstruction algorithm works as follows:
• Determine the types of definitions in order, using the types of earlier definitions to infer the types of later ones.
(Which is one reason you may not use a name before it is bound in an OCaml program.)

• For eachlet definition, analyze the definition to determine constraints about its type. For example, if the inferencer
sees x + 1, it concludes that xmust have type int. It gathers similar constraints for function applications, pattern
matches, etc. Think of these constraints as a system of equations like you might have in algebra.

• Use that system of equations to solve for the type of the name being defined.
The OCaml type reconstruction algorithm attempts to never reject a program that could type check, if the programmer
had written down types. It also attempts never to accept a program that cannot possibly type check. Some more obscure
parts of the language can sometimes make type annotations either necessary or at least helpful (see Real World OCaml
chapter 22, “Type inference”, for examples). But for most code you write, type annotations really are completely optional.
Since it would be verbose to keep writing “the type reconstruction algorithm used by OCaml and other functional lan-
guages,” we’ll call the algorithm HM. That name is used throughout the programming languages literature, because the
algorithm was independently invented by Roger Hindley and Robin Milner.
HM has been rediscovered many times by many people. Curry used it informally in the 1950s (perhaps even the 1930s).
He wrote it up formally in 1967 (published 1969). Hindley discovered it independently in 1969; Morris in 1968; and
Milner in 1978. In the realm of logic, similar ideas go back perhaps as far as Tarski in the 1920s. Commenting on this
history, Hindley wrote,

There must be a moral to this story of continual re-discovery; perhaps someone along the line should have
learned to read. Or someone else learn to write.

Although we haven’t seen the HM algorithm yet, you probably won’t be surprised to learn that it’s usually very efficient—
you’ve probably never had to wait for the toplevel to print the inferred types of your programs. In practice, it runs in
approximately linear time. But in theory, there are some very strange programs that can cause its running-time to blow
up. (Technically, it’s exponential time.) For fun, try typing the following code in utop:

# let b = true;;
# let f0 = fun x -> x + 1;;
# let f = fun x -> if b then f0 else fun y -> x y;;
# let f = fun x -> if b then f else fun y -> x y;;
# let f = fun x -> if b then f else fun y -> x y;;
(* keep repeating that last line *)
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You’ll see the types get longer and longer, and eventually (around 20 repetitions or so) type inference will cause a significant
delay.

11.6.2 Constraint-Based Inference

Let’s build up to the HM type inference algorithm by starting with this little language:

e ::= x | i | b | e1 bop e2
| if e1 then e2 else e3
| fun x -> e
| e1 e2

bop ::= + | * | <=

t ::= int | bool | t1 -> t2

That language is SimPL, plus the lambda calculus, minus let expressions. It turns out let expressions add an extra
layer of complication, so we’ll come back to them later.
Since anonymous functions in this language do not have type annotations, we have to infer the type of the argument x.
For example,

• In fun x -> x + 1, argument x must have type int hence the function has type int -> int.
• In fun x -> if x then 1 else 0, argument x must have type bool hence the function has type bool
-> int.

• The function fun x -> if x then x else 0 is untypeable, because it would require x to have both type
int and bool, which isn’t allowed.

A Syntactic Simplification. We can treat e1 bop e2 as syntactic sugar for ( bop ) e1 e2. That is, we treat
infix binary operators as prefix function application. Let’s introduce a new syntactic class n for names, which generalize
identifiers and operators. That changes the syntax to:

e ::= n | i | b
| if e1 then e2 else e3
| fun x -> e
| e1 e2

n ::= x | bop

bop ::= ( + ) | ( * ) | ( <= )

t ::= int | bool | t1 -> t2

We already know the types of those built-in operators:

( + ) : int -> int -> int
( * ) : int -> int -> int
( <= ) : int -> int -> bool

Those types are given; we don’t have to infer them. They are part of the initial static environment. In OCaml those
operator names could later be shadowed by values with different types, but here we don’t have to worry about that because
we don’t yet have let.
How would you mentally infer the type of fun x -> 1 + x, or rather, fun x -> ( + ) 1 x? It’s automatic by
now, but we could break it down into pieces:
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• Start with x having some unknown type t.
• Note that ( + ) is known to have type int -> (int -> int).
• So its first argument must have type int. Which 1 does.
• And its second argument must have type int, too. So t = int. That is a constraint on t.
• Finally, the body of the function must also have type int, since that’s the return type of ( + ).
• Therefore, the type of the entire function must be t -> int.
• Since t = int, that type is int -> int.

The type inference algorithm follows the same idea of generating unknown types, collecting constraints on them, and
using the constraints to solve for the type of the expression.
Let’s introduce a new quaternary relation env |- e : t -| C, which should be read as follows: “in environment
env, expression e is inferred to have type t and generates constraint set C.” A constraint is an equation of the form t1
= t2 for any types t1 and t2.
If we think of the relation as a type-inference function, the colon in the middle separates the input from the output. The
inputs are env and e: we want to know what the type of e is in environment env. The function returns as output a type
t and constraints C.
The e : t in the middle of the relation is approximately what you see in the toplevel: you enter an expression, and it
tells you the type. But around that is an environment and constraint set env |- ... -| C that is invisible to you. So,
the turnstiles around the outside show the parts of type inference that the toplevel does not.
The easiest parts of inference are constants:

env |- i : int -| {}

env |- b : bool -| {}

Any integer constant i, such as 42, is known to have type int, and there are no constraints generated. Likewise for
Boolean constants.
Inferring the type of a name requires looking it up in the environment:

env |- n : env(n) -| {}

No constraints are generated.
If the name is not bound in the environment, the expression cannot be typed. It’s an unbound name error.
The remaining rules are at their core the same as the type-checking rules we saw previously, but they each generate a type
variable and possibly some constraints on that type variable.
If.
Here’s the rule for if expressions:

env |- if e1 then e2 else e3 : 't -| C1, C2, C3, t1 = bool, 't = t2, 't = t3
if fresh 't
and env |- e1 : t1 -| C1
and env |- e2 : t2 -| C2
and env |- e3 : t3 -| C3

To infer the type of an if, we infer the types t1, t2, and t3 of each of its subexpressions, along with any constraints on
them. We have no control over what those types might be; it depends on what the programmer wrote. But we do know
that the type of the guard must be bool. So we generate a constraint that t1 = bool.
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Furthermore, we know that both branches must have the same type—though, we don’t know in advance what that type
might be. So, we invent a fresh type variable 't to stand for that type. A type variable is fresh if it has never been used
elsewhere during type inference. So, picking a fresh type variable just means picking a new name that can’t possibly be
confused with any other names in the program. We return 't as the type of the if, and we record two constraints 't
= t2 and 't = t3 to say that both branches must have that type.
We therefore need to add type variables to the syntax of types:

t ::= 'x | int | bool | t1 -> t2

Some example type variables include 'a, 'foobar, and 't. In the last, t is an identifier, not a meta-variable.
Here’s an example:

{} |- if true then 1 else 0 : 't -| bool = bool, 't = int
{} |- true : bool -| {}
{} |- 1 : int -| {}
{} |- 0 : int -| {}

The full constraint set generated is {}, {}, {}, bool = bool, 't = int, 't = int, but of course that
simplifies to just bool = bool, 't = int. From that constraint set we can see that the type of if true then
1 else 0 must be int.
Anonymous functions.
Since there is no type annotation on x, its type must be inferred:

env |- fun x -> e : 't1 -> t2 -| C
if fresh 't1
and env, x : 't1 |- e : t2 -| C

We introduce a fresh type variable 't1 to stand for the type of x, and infer the type of body e under the environment in
which x : 't1. Wherever x is used in e, that can cause constraints to be generated involving 't1. Those constraints
will become part of C.
Here’s a function where we can immediately see that x : bool, but let’s work through the inference:

{} |- fun x -> if x then 1 else 0 : 't1 -> 't -| 't1 = bool, 't = int
{}, x : 't1 |- if x then 1 else 0 : 't -| 't1 = bool, 't = int
{}, x : 't1 |- x : 't1 -| {}
{}, x : 't1 |- 1 : int -| {}
{}, x : 't1 |- 0 : int -| {}

The inferred type of the function is 't1 -> 't, with constraints 't1 = bool and 't = int. Simplifying that,
the function’s type is bool -> int.
Function application.
The type of the entire application must be inferred, because we don’t yet know anything about the types of either subex-
pression:

env |- e1 e2 : 't -| C1, C2, t1 = t2 -> 't
if fresh 't
and env |- e1 : t1 -| C1
and env |- e2 : t2 -| C2

We introduce a fresh type variable 't for the type of the application expression. We use inference to determine the types
of the subexpressions and any constraints they happen to generate. We add one new constraint, t1 = t2 -> 't,
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which expresses that the type of the left-hand side e1must be a function that takes in an argument of type t2 and returns
a value of type 't.
Let I be the initial environment that binds the boolean operators. Let’s infer the type of a partial application of ( + ):

I |- ( + ) 1 : 't -| int -> int -> int = int -> 't
I |- ( + ) : int -> int -> int -| {}
I |- 1 : int -| {}

From the resulting constraint, we see that

int -> int -> int
=
int -> 't

Stripping the int -> off the left-hand side of each of those function types, we are left with

int -> int
=
't

Hence, the type of ( + ) 1 is int -> int.

11.6.3 Solving Constraints

What does it mean to solve a set of constraints? Since constraints are equations on types, it’s much like solving a system
of equations in algebra. We want to solve for the values of the variables appearing in those equations. By substituting
those values for the variables, we should get equations that are identical on both sides. For example, in algebra we might
have:

5x + 2y = 9
x - y = -1

Solving that system, we’d get that x = 1 and y = 2. If we substitute 1 for x and 2 for y, we get:

5(1) + 2(2) = 9
1 - 2 = -1

which reduces to

9 = 9
-1 = -1

In programming languages terminology (though perhaps not high-school algebra), we say that the substitutions {1 /
x} and {2 / y} together unify that set of equations, because they make each equation “unite” such that its left side is
identical to its right side.
Solving systems of equations on types is similar. Just as we found numbers to substitute for variables above, we now want
to find types to substitute for type variables, and thereby unify the set of equations.
Much like the substitutions we defined before for the substitution model of evaluation, we’ll write {t / 'x} for the
type substitution that maps type variable 'x to type t. For example, t1 {t2/'x} means type t1 with t2 substituted
for 'x.
We can define substitution on types as follows:
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int {t / 'x} = int
bool {t / 'x} = bool
'x {t / 'x} = t
'y {t / 'x} = 'y
(t1 -> t2) {t / 'x} = (t1 {t / 'x} ) -> (t2 {t / 'x} )

Given two substitutions S1 and S2, we write S1; S2 to mean the substitution that is their sequential composition, which
is defined as follows:

t (S1; S2) = (t S1) S2

The order matters. For example, 'x ({('y -> 'y) / 'x}; {bool / 'y}) is bool -> bool, not 'y
-> 'y. We can build up bigger and bigger substitutions this way.
A substitution S can be applied to a constraint t = t'. The result (t = t') S is defined to be t S = t' S. So
we just apply the substitution on both sides of the constraint.
Finally, a substitution can be applied to a set C of constraints; the result C S is the result of applying S to each of the
individual constraints in C.
A substitution unifies a constraint t_1 = t_2 if t_1 S results in the same type as t_2 S. For example, substitution
S = {int -> int / 'y}; {int / 'x} unifies constraint 'x -> ('x -> int) = int -> 'y, because

('x -> ('x -> int)) S
=
int -> (int -> int)

and

(int -> 'y) S
=
int -> (int -> int)

A substitution S unifies a set C of constraints if S unifies every constraint in C.
At last, we can precisely say what it means to solve a set of constraints: we must find a substitution that unifies the set.
That is, we need to find a sequence of maps from type variables to types, such that the sequence causes each equation in
the constraint set to “unite”, meaning that its left-hand side and right-hand side become the same.
To find a substitution that unifies constraint set C, we use an algorithm unify, which is defined as follows:

• If C is the empty set, then unify(C) is the empty substitution.
• If C contains at least one constraint t1 = t2 and possibly some other constraints C', then unify(C) is defined
as follows:

– If t1 and t2 are both the same simple type—i.e., both the same type variable 'x, or both int or both
bool—then return unify(C'). In this case, the constraint contained no useful information, so we’re tossing
it out and continuing.

– If t1 is a type variable 'x and 'x does not occur in t2, then let S = {t2 / 'x}, and return S;
unify(C' S). In this case, we are eliminating the variable 'x from the system of equations, much like
Gaussian elimination in solving algebraic equations.

– If t2 is a type variable 'x and 'x does not occur in t1, then let S = {t1 / 'x}, and return S;
unify(C' S). This is an elimination like the previous case.
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– If t1 = i1 -> o1 and t2 = i2 -> o2, where i1, i2, o1, and o2 are types, then unify(i1 =
i2, o1 = o2, C'). In this case, we break one constraint down into two smaller constraints and add those
constraints back in to be further unified.

– Otherwise, fail. There is no possible unifier.
In the second and third subcases, the check that 'x should not occur in the type ensures that the algorithm is actually
eliminating the variable. Otherwise, the algorithm could end up re-introducing the variable instead of eliminating it.
It’s possible to prove that the unification algorithm always terminates, and that it produces a result if and only if a unifier
actually exists—that is, if and only if the set of constraints has a solution. Moreover, the solution the algorithm produces
is the most general unifier, in the sense that if S = unify(C) and S' also unifies C, then there must exist some S''
such that S' = S; S''. Such an S' is less general than S because it contains the additional substitutions of S''.

11.6.4 Finishing Type Inference

Let’s review what we’ve done so far. We started with this language:

e ::= n | i | b
| if e1 then e2 else e3
| fun x -> e
| e1 e2

n ::= x | bop

bop ::= ( + ) | ( * ) | ( <= )

t ::= int | bool | t1 -> t2

We then introduced an algorithm for inferring a type of an expression. That type came along with a set of constraints.
The algorithm was expressed in the form of a relation env |- e : t -| C.
Next, we introduced the unification algorithm for solving constraint sets. That algorithm produces as output a sequence
S of substitutions, or it fails. If it fails, then e is not typeable.
To finish type inference and reconstruct the type of e, we just compute t S. That is, we apply the solution to the
constraints to the type t produced by constraint generation.
Let p be that type. That is, p = t S. It’s possible to prove p is the principal type for the expression, meaning that if e
also has type t for any other t, then there exists a substitution S such that t = p S.
For example, the principal type of the identity function fun x -> x would be 'a -> 'a. But you could also give
that function the less helpful type int -> int. What we’re saying is that HM will produce 'a -> 'a, not int ->
int. So in a sense, HM actually infers the most “lenient” type that is possible for an expression.
AWorked Example. Let’s infer the type of the following expression:

fun f -> fun x -> f (( + ) x 1)

It’s not much code, but this will get quite involved!
We start in the initial environment I that, among other things, maps ( + ) to int -> int -> int.

I |- fun f -> fun x -> f (( + ) x 1)

For now we leave off the : t -| C, because that’s the output of constraint generation. We haven’t figured out the output
yet! Since we have a function, we use the function rule for inference to proceed by introducing a fresh type variable for
the argument:
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I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1) <-- Here

Again we have a function, hence a fresh type variable:

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1) <-- Here

Now we have an application expression. Before dealing with it, we need to descend into its subexpressions. The first one
is easy. It’s just a variable. So we finally can finish a judgment with the variable’s type from the environment, and an
empty constraint set.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {} <-- Here

Next is the second subexpression.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1 <-- Here

That is another application, so we need to handle its subexpressions. Recall that ( + ) x 1 is parsed as (( + ) x)
1. So the first subexpression is the complicated one to handle.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1

I, f : 'a, x : 'b |- ( + ) x <-- Here

Yet another application.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1

I, f : 'a, x : 'b |- ( + ) x
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {} <-- Here

That one was easy, because we just had to look up the name ( + ) in the environment. The next is also easy, because
we just look up x.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1

(continues on next page)

11.6. Type Inference 483



OCaml Programming: Correct + Efficient + Beautiful

(continued from previous page)

I, f : 'a, x : 'b |- ( + ) x
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {} <-- Here

At last, we’re ready to resolve a function application! We introduce a fresh type variable and add a constraint. The
constraint is that the inferred type int -> int -> int of the left-hand subexpression must equal the inferred type
'b of the right-hand subexpression arrow the fresh type variable 'c, that is, 'b -> 'c.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1

I, f : 'a, x : 'b |- ( + ) x : 'c -| int -> int -> int = 'b -> 'c <-- Here
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {}

Now we’re ready for the argument being passed to that function.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1

I, f : 'a, x : 'b |- ( + ) x : 'c -| int -> int -> int = 'b -> 'c
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {}

I, f : 'a, x : 'b |- 1 : int -| {} <-- Here

Again we can resolve a function application with a new type variable and constraint.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1)

I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1 : 'd -| 'c = int -> 'd, int -> int -> int = 'b ->

↪ 'c <-- Here
I, f : 'a, x : 'b |- ( + ) x : 'c -| int -> int -> int = 'b -> 'c
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {}

I, f : 'a, x : 'b |- 1 : int -| {}

And once more, a function application, so a new type variable and a new constraint.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1)
I, f : 'a, x : 'b |- f (( + ) x 1) : 'e -| 'a = 'd -> 'e, 'c = int -> 'd, int ->␣

↪int -> int = 'b -> 'c <-- Here
I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1 : 'd -| 'c = int -> 'd, int -> int -> int = 'b ->

↪ 'c
I, f : 'a, x : 'b |- ( + ) x : 'c -| int -> int -> int = 'b -> 'c
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {}

I, f : 'a, x : 'b |- 1 : int -| {}
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Now we finally get to finish off an anonymous function. Its inferred type is the fresh type variable 'b of its parameter x,
arrow the inferred type e of its body.

I |- fun f -> fun x -> f (( + ) x 1)
I, f : 'a |- fun x -> f (( + ) x 1) : 'b -> 'e -| 'a = 'd -> 'e, 'c = int -> 'd,␣

↪int -> int -> int = 'b -> 'c <-- Here
I, f : 'a, x : 'b |- f (( + ) x 1) : 'e -| 'a = 'd -> 'e, 'c = int -> 'd, int ->␣

↪int -> int = 'b -> 'c
I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1 : 'd -| 'c = int -> 'd, int -> int -> int = 'b ->

↪ 'c
I, f : 'a, x : 'b |- ( + ) x : 'c -| int -> int -> int = 'b -> 'c
I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {}

I, f : 'a, x : 'b |- 1 : int -| {}

And the last anonymous function can now be complete in the same way:

I |- fun f -> fun x -> f (( + ) x 1) : 'a -> 'b -> 'e -| 'a = 'd -> 'e, 'c = int ->
↪'d, int -> int -> int = 'b -> 'c <-- Here
I, f : 'a |- fun x -> f (( + ) x 1) : 'b -> 'e -| 'a = 'd -> 'e, 'c = int -> 'd,␣

↪int -> int -> int = 'b -> 'c
I, f : 'a, x : 'b |- f (( + ) x 1) : 'e -| 'a = 'd -> 'e, 'c = int -> 'd, int ->␣

↪int -> int = 'b -> 'c
I, f : 'a, x : 'b |- f : 'a -| {}
I, f : 'a, x : 'b |- ( + ) x 1 : 'd -| 'c = int -> 'd, int -> int -> int = 'b -

↪> 'c
I, f : 'a, x : 'b |- ( + ) x : 'c -| int -> int -> int = 'b -> 'c

I, f : 'a, x : 'b |- ( + ) : int -> int -> int -| {}
I, f : 'a, x : 'b |- x : 'b -| {}

I, f : 'a, x : 'b |- 1 : int -| {}

As a result of constraint generation, we know that the type of the expression is 'a -> 'b -> 'e, where

'a = 'd -> 'e
'c = int -> 'd
int -> int -> int = 'b -> 'c

To solve that system of equations, we use the unification algorithm:

unify('a = 'd -> 'e, 'c = int -> 'd, int -> int -> int = 'b -> 'c)

The first constraint yields a substitution {('d -> 'e) / 'a}, which we record as part of the solution, and also apply
it to the remaining constraints:

...
=
{('d -> 'e) / 'a}; unify(('c = int -> 'd, int -> int -> int = 'b -> 'c) {('d -> 'e) /

↪'a})
=
{('d -> 'e) / 'a}; unify('c = int -> 'd, int -> int -> int = 'b -> 'c)

The second constraint behaves similarly to the first:

...
=

(continues on next page)
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{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; unify((int -> int -> int = 'b -> 'c) {(int ->
↪'d) / 'c})

=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; unify(int -> int -> int = 'b -> int -> 'd)

The function constraint breaks down into two smaller constraints:

...
=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; unify(int = 'b, int -> int = int -> 'd)

We get another substitution:

...
=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; {int / 'b}; unify((int -> int = int -> 'd)

↪{int / 'b})
=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; {int / 'b}; unify(int -> int = int -> 'd)

Then we get to break down another function constraint:

...
=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; {int / 'b}; unify(int = int, int = 'd)

The first of the resulting new constraints is trivial and just gets dropped:

...
=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; {int / 'b}; unify(int = 'd)

The very last constraint gives us one more substitution:

=
{('d -> 'e) / 'a}; {(int -> 'd) / 'c}; {int / 'b}; {int / 'd}

To finish, we apply the substitution output by unification to the type inferred by constraint generation:

('a -> 'b -> 'e) {('d -> 'e) / 'a}; {(int -> 'd) / 'c}; {int / 'b}; {int / 'd}
=
(('d -> 'e) -> 'b -> 'e) {(int -> 'd) / 'c}; {int / 'b}; {int / 'd}
=
(('d -> 'e) -> 'b -> 'e) {int / 'b}; {int / 'd}
=
(('d -> 'e) -> int -> 'e) {int / 'd}
=
(int -> 'e) -> int -> 'e

And indeed that is the same type that OCaml would infer for the original expression:

# fun f -> fun x -> f (( + ) x 1);;
- : (int -> 'a) -> int -> 'a = <fun>
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Except that OCaml uses a different type variable identifier. OCaml is nice to us and “lowers” the type variables down to
smaller letters of the alphabet. We could do that too with a little extra work.
Type Errors. In reality there is yet another piece to type inference. If unification fails, the compiler or interpreter needs
to produce a helpful error message. That’s an important engineering challenge that we won’t address here. It requires
keeping track of more than just constraints: we need to know why a constraint was introduced, and the ramification of its
violation. We also need to track the constraint back to the lexical piece of code that produced it, so that programmers can
see where the problem occurs. And since it’s possible that constraints can be processed in many different orders, there
are many possible error messages that could be produced. Figuring out which one will lead the programmer to the root
cause of an error, instead of some downstream consequence of it, is an area of ongoing research.

11.6.5 Let Polymorphism

Now we’ll add let expressions to our little language:

e ::= x | i | b | e1 bop e2
| if e1 then e2 else e3
| fun x -> e
| e1 e2
| let x = e1 in e2 (* new *)

It turns out type inference for them is considerably trickier than might be expected. The naive approach would be to add
this constraint generation rule:

env |- let x = e1 in e2 : t2 -| C1, C2
if env |- e1 : t1 -| C1
and env, x : t1 |- e2 : t2 -| C2

From the type-checking perspective, that’s the same rule we’ve always used. And for many let expressions it works
perfectly fine. For example:

{} |- let x = 42 in x : int -| {}
{} |- 42 : int -| {}
x : int |- x : int -| {}

The problem is that when the value being bound is a polymorphic function, that rule generates constraints that are too
restrictive. For example, consider the identity function:

let id = fun x -> x in
let a = id 0 in
id true

OCaml has no trouble inferring the type of id as 'a -> 'a and permitting it to be applied both to an int and a bool.
But the rule above isn’t so permissive about application to both types. When we use it, we generate the following types
and constraints:

{} |- let id = fun x -> x in (let a = id 0 in id true) : 'c -| 'a -> 'a = int -> 'b,
↪'a -> 'a = bool -> 'c
{} |- fun x -> x : 'a -| {}
x : 'a |- x : 'a -| {}

id : 'a -> 'a |- let a = id 0 in id true : 'c -| 'a -> 'a = int -> 'b, 'a -> 'a =␣
↪bool -> 'c <--- POINT 1

id : 'a -> 'a |- id 0 : 'b -| 'a -> 'a = int -> 'b
id : 'a -> 'a |- id : 'a -> 'a -| {}

(continues on next page)
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id : 'a -> 'a |- 0 : int -| {}
id : 'a -> 'a, a : 'b |- id true : 'c -| 'a -> 'a = bool -> 'c <--- POINT 2

id : 'a -> 'a, a : 'b |- id : 'a -> 'a -| {}
id : 'a -> 'a, a : 'b |- true : bool -| {}

Notice that we do infer a type 'a -> 'a for id, which you can see in the environment in later lines of the example.
But, at Point 1, we infer a constraint 'a -> 'a = int -> 'b, and at Point 2, we infer 'a -> 'a = bool ->
'c. When the unification algorithm encounters those constraints, it will break them down into 'a = int, ‘a = 'b,
'a = bool, and 'a = 'c. The first and third of those are contradictory, because we can’t have 'a = int and 'a
= bool. One or the other will be substituted away during unification, leaving an unsatisfiable constraint int = bool.
At that point unification will fail, declaring the program to be ill-typed.
The problem is that the 'a type variable in the inferred type of id stands for an unknown but fixed type. At each
application of id, we want to let 'a become a different type, instead of forcing it to always be the same type.
The solution to the problem of polymorphism for let expressions is not simple. It requires us to introduce a new kind of
type: a type scheme. Type schemes resemble universal quantification from mathematical logic. For example, in logic you
might write, “for all natural numbers 𝑥, it holds that 0 ⋅ 𝑥 = 0”. The “for all” is the universal quantification: it abstracts
away from a particular 𝑥 and states a property that is true of all natural numbers.
A type scheme is written 'a . t, where 'a is a type variable and t is a type in which 'a may appear. For example,
'a . 'a -> 'a is a type scheme. It is the type of a function that takes in a value of type 'a and returns a value of
type 'a, for all 'a. Thus, it is the type of the polymorphic identity function.
We can also have many type variables to the left of the dot in a type scheme. For example, 'a 'b . 'a -> 'b ->
'a is the type of a function that takes in two arguments and returns the first. In OCaml, we could write that as fun x
y -> x. Note that utop infers the type of it as we would expect:

# let f = fun x y -> x;;
val f : 'a -> 'b -> 'a = <fun>

But we could actually manually write down an annotation with a type scheme:

# let f : 'a 'b . 'a -> 'b -> 'a = fun x y -> x;;
val f : 'a -> 'b -> 'a = <fun>

Note that OCaml accepts our manual type annotation but doesn’t include the 'a 'b . part of it in its output. But
it’s implicitly there and always has been. In general, anytime OCaml has inferred a type t and that type has had type
variables in it, in reality it’s a type scheme. For example, the type of List.length is really a type scheme:

# let mylen : 'a . 'a list -> int = List.length;;
val mylen : 'a list -> int = <fun>

OCaml just doesn’t bother outputting the list of type variables that are to the left of the dot in the type scheme. Really
they’d just clutter the output, and many programmers never need to know about them. But now that you’re learning type
inference, it’s time for you to know.
Now that we have type schemes, we’ll have static environments that map names to type schemes. We can think of types
as being special cases of type schemes in which the list of type variables is empty. With type schemes, the let rule
changes in only one way from the naive rule above, which is the generalize on the last line:

env |- let x = e1 in e2 : t2 -| C1, C2
if env |- e1 : t1 -| C1
and generalize(C1, env, x : t1) |- e2 : t2 -| C2
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The job of generalize is to take a type like 'a -> 'a and generalize it into a type scheme like 'a . 'a ->
'a in an environment env against constraints C1. Let’s come back to how it works in a minute. Before that, there’s one
other rule that needs to change, which is the name rule:

env |- n : instantiate(env(n)) -| {}

The only thing that changes there is that use of instantiate. Its job is to take a type scheme like 'a . 'a ->
'a and instantiate it into a new type (and here we strictly mean a type, not a type scheme) with fresh type variables. For
example, 'a . 'a -> 'a could be instantiated as 'b -> 'b, if 'b isn’t yet in use anywhere else as a type variable.
Here’s how those two revised rules work together to get our earlier example with the identify function right:

{} |- let id = fun x -> x in (let a = id 0 in id true)
{} |- fun x -> x : 'a -> 'a -| {}
x : 'a |- x : 'a -| {}

id : 'a . 'a -> 'a |- let a = id 0 in id true <--- POINT 1

Let’s pause there at Point 1. When id is put into the environment by the let rule, its type is generalized from 'a ->
'a to 'a . 'a -> 'a; that is, from a type to a type scheme. That records the fact that each application of id should
get to use its own value for 'a. Going on:

{} |- let id = fun x -> x in (let a = id 0 in id true)
{} |- fun x -> x : 'a -> 'a -| {}
x : 'a |- x : 'a -| {}

id : 'a . 'a -> 'a |- let a = id 0 in id true <--- POINT 1
id : 'a . 'a -> 'a |- id 0

id : 'a . 'a -> 'a |- id : 'b -> 'b -| {} <--- POINT 3

Pausing here at Point 3, when id is applied to 0, we instantiate its type variable 'a with a fresh type variable 'b. Let’s
finish:

{} |- let id = fun x -> x in (let a = id 0 in id true) : 'e -| 'b -> 'b = int -> 'c,
↪'d -> 'd = bool -> 'e
{} |- fun x -> x : 'a -> 'a -| {}
x : 'a |- x : 'a -| {}

id : 'a . 'a -> 'a |- let a = id 0 in id true : 'e -| 'b -> 'b = int -> 'c, 'd ->
↪'d = bool -> 'e <--- POINT 1

id : 'a . 'a -> 'a |- id 0 : 'c -| 'b -> 'b = int -> 'c
id : 'a . 'a -> 'a |- id : 'b -> 'b -| {} <--- POINT 3
id : 'a . 'a -> 'a |- 0 : int -| {}

id : 'a . 'a -> 'a, a : 'b |- id true : 'e -| 'd -> 'd = bool -> 'e <--- POINT 2
id : 'a . 'a -> 'a, a : 'b |- id : 'd -> 'd -| {} <--- POINT 4
id : 'a . 'a -> 'a, a : 'b |- true : bool -| {}

At Point 4, when id is applied to true, we again instantiate its type variable 'a with a fresh type variable, this time 'd.
So the constraints collected at Points 1 and 2 are no longer contradictory, because they are talking about different type
variables. Those constraints are:

'b -> 'b = int -> 'c
'd -> 'd = bool -> 'e

The unification algorithm will therefore conclude:

'b = int
'c = int

(continues on next page)
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(continued from previous page)

'd = bool
'e = bool

So the entire expression is successfully inferred to have type bool.
Instantiation and Generalization. We used two new functions, instantiate and generalize, to define type
inference for let expressions. We need to define those functions.
The easy one is instantiate. Given a type scheme 'a1 'a2 ... 'an . t, we instantiate it by:

• choosing n fresh type variables, and
• substituting each of those for 'a1 through 'an in t.

Substitution is uncomplicated here, compared to how it was for evaluation in the substitution model, because there is
nothing in a type that can bind variable names.
But generalize requires more work. Here’s the let rule again:

env |- let x = e1 in e2 : t2 -| C1, C2
if env |- e1 : t1 -| C1
and generalize (C1, env, x : t1) |- e2 : t2 -| C2

To generalize t1, we do the following.
First, we pretend like e1 is all that matters, and that the rest of the let expression doesn’t exist. If e1 were the entire
program, how would we finish type inference? We’d run the unification algorithm on C1, get a substitution S, and return
t1 S as the inferred type of e1. So, do that now. Let’s call that inferred type u1. Let’s also apply S to env to get a new
environment env1, which now reflects all the type information we’ve gleaned from e1.
Second, we figure out which type variables in u1 should be generalized. Why not all of them? Because some type
variables could have been introduced by code that surrounds the let expression, e.g.,

fun x ->
(let y = e1 in e2) (let z = e3 in e4)

The type variable for x should not be generalized in inferring the type of either y or z, because x has to have the same
type in all four subexpressions, e1 through e4. Generalizing could mistakenly allow x to have one type in e1 and e2,
but a different type in e3 and e4.
So instead we generalize only variables that are in u1 but are not in env1. That way we generalize only the type variables
from e1, not variables that were already in the environment when we started inferring the let expression’s type. Suppose
those variables are 'a1 ... 'an. The type scheme we give to x is then 'a1 ... 'an . u1.
Putting all that together, we end up with:

generalize(C1, env, x : t1) =
env1, x : 'a1 ... 'an . u1

Returning to our example with the identify function from above, we had generalize({}, {}, x : 'a ->
'a). In that rather simple case, unify discovers no new equalities from the environment, so u1 = 'a -> 'a and
env1 = {}. The only type variable in u1 is 'a, and it doesn’t appear in env1. So 'a is generalized, yielding 'a .
'a -> 'a as the type scheme for id.
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11.6.6 Polymorphism and Mutability

There is yet one more complication to type inference for let expressions. It appears when we add mutable references to
the language. Consider this example code, which does not type check in OCaml:

let succ = fun x -> ( + ) 1 x;;
let id = fun x -> x;;
let r = ref id;;
r := succ;;
!r true;; (* error *)

It’s clear we should infer succ : int -> int and id : 'a . 'a -> 'a. But what should the type of r be?
It’s tempting to say we should infer r : 'a . ('a -> 'a) ref. That would let us instantiate the type of r to be
(int -> int) ref on line 4 and store succ in r. But it also would let us instantiate the type of r to be (bool
-> bool) ref on line 5. That’s a disaster: it causes the application of succ to true, which is not type safe.
The solution adopted by OCaml and related languages is called the value restriction: the type system is designed to prevent
a polymorphic mutable value from ever holding more than one type. Let’s redo some of that example again, pausing to
look at the toplevel output:

# let id = fun x -> x;;
val id : 'a -> 'a = <fun> (* as expected *)

# let r = ref id;;
val r : ('_weak1 -> '_weak1) ref = { ... } (* what is _weak? *)

# r;;
- : ('_weak1 -> '_weak1) ref = { ... } (* it's consistent at least *)

# r := succ;;
- : unit = ()

# r;;
- : (int -> int) ref = { ... } (* did r just change type ?! *)

When the type of r is inferred, OCaml gives it a type involving a weak type variable. All such variables have a name
starting with '_weak. A weak type variable is one that has not been generalized hence cannot be instantiated on multiple
types. Rather, it indicates a single type that is not yet known. Think of it as type inference for that variable is not yet
finished: OCaml is waiting for more information to pin down precisely what it is. When r := succ is executed, that
information finally becomes available. OCaml infers that '_weak1 = int from the type of succ. Then OCaml
replaces '_weak1 with int everywhere. That’s what yields an error on the final line:

# !r true;;
Error: This expression has type bool but an expression was expected of type int

Since r : (int -> int) ref, we cannot apply !r to a bool.
We won’t cover the implementation of weak type variables here.
But, let’s not leave this topic of the interaction between polymorphic types and mutability yet. You might be tempted to
think that it’s a phenomenon that affects only OCaml. But indeed, even Java suffers.
Consider the following class hierarchy:

class Animal { }
class Elephant extends Animal { }
class Rabbit extends Animal { }
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Now suppose we create an array of animals:

Animal[] a= new Rabbit[2]

Here we are using subtype polymorphism to assign an array of Rabbit objects to an Animal[] reference. That’s not
the same as parametric polymorphism as we’ve been using in OCaml, but it’s nonetheless polymorphism.
What if we try this?

a[0]= new Elephant()

Since a is typed as an Animal array, it stands to reason that we could assign an elephant object into it, just as we could
assign a rabbit object. And indeed that code is fine according to the Java compiler. But Java gives us a runtime error if
we run that code!

Exception java.lang.ArrayStoreException

The problem is that mutating the first array element to be a rabbit would leave us with a Rabbit array in which one
element is a Elephant. (Ouch! An elephant would sit on a rabbit. Poor bun bun.) But in Java, the type of every object
of an array is supposed to be a property of the array as a whole. Every element of the array created by new Rabbit[2]
therefore must be a Rabbit. So Java prevents the assignment above by detecting the error at run time and raising an
exception.
This is really the value restriction in another guise! The type of a value stored in a mutable location may not change,
according to the value restriction. With arrays, Java implements that with a run-time check, instead of rejecting the
program at compile time. This strikes a balance between soundness (preventing errors from happening) and expressivity
(allowing more error-free programs to type check).

11.7 Summary

At first, it might seem mysterious how a programming language could be implemented. But, after this chapter, hopefully
some of that mystery has been revealed. Implementation of a programming language is just a matter of the same studious
application of syntax, dynamic semantics, and static semantics that we’ve studied throughout this book. It also relies
heavily on CS theory of the kind studied in discrete mathematics or theory of computation courses.

11.7.1 Terms and Concepts

• abstract syntax
• abstract syntax tree
• associativity
• back end
• Backus-Naur Form (BNF)
• big step
• bytecode
• call by name
• call by value
• capture-avoiding substitution
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• closure
• compiler
• concrete syntax
• constraint
• context-free grammar
• context-free language
• desugaring
• dynamic environment
• dynamic scope
• environment model
• evaluation
• fresh
• front end
• generalization
• Hindley–Milner (HM) type inference algorithm
• implicit typing
• instantiation
• intermediate representation
• interpreter
• lambda calculus
• let polymorphism
• lexer
• machine configuration
• metavariable
• nonterminal
• operational semantics
• optimizing compiler
• parser
• precedence
• preliminary type variable
• preservation
• primitive operatiohn
• progress
• pushdown automata
• regular expression
• regular language
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• relation
• semantic analysis
• short circuit
• small step
• source program
• static scope
• static typing
• stuck
• substitution
• substitution model
• subtype polymorphism
• symbol
• symbol table
• target program
• terminal
• token
• type annotation
• type checking
• type inference
• type reconstruction
• type safety
• type scheme
• type system
• type variable
• typing context
• unification
• unifier
• value
• value restriction
• virtual machine
• weak type variable
• well-typed
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11.7.2 Further Reading

• Types and Programming Languages by Benjamin C. Pierce, chapters 1-14, 22.
• Modern Compiler Implementation (in Java or ML) by Andrew W. Appel, chapters 1-5.
• Automata and Computability by Dexter C. Kozen, chapters 1-27.
• Real World OCaml has a chapter on the OCaml frontend.
• This webpage documents some of the internals of the OCaml type checker and inferencer.
• The OCaml VM aka the Zinc Machine is described in these papers: 1, 2.

11.7.3 Acknowledgment

Our treatment of type inference is based on Pierce.

11.8 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.
Many of these exercises rely on the SimPL interpreter as starter code. You can download it here: simpl.zip.

Exercise: parse [★]
Run make utop in the SimPL interpreter implementation. It will compile the interpreter and launch utop. Then type
open Interp.Main and evaluate the following expressions. Note what each returns.

• parse "22"

• parse "1 + 2 + 3"

• parse "let x = 2 in 20 + x"

Also evaluate these expressions, which will raise exceptions. Explain why each one is an error, and whether the error
occurs during parsing or lexing.

• parse "3.14"

• parse "3+"

Exercise: simpl ids [★★]
Examine the definition of the id regular expression in the SimPL lexer. Identify at least one way in which it differs from
the definition of OCaml identifiers.

Exercise: times parsing [★★]
In the SimPL parser, the TIMES token is declared as having higher precedence than PLUS, and as being left associative.
Let’s experiment with other choices.

• Evaluate parse "1*2*3". Note the AST. Now change the declaration of the associativity of TIMES in
parser.mly to be %right instead of %left. Recompile and reevaluate parse "1*2*3". How did the
AST change? Before moving on, restore the declaration to be %left.
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• Evaluate parse "1+2*3". Note the AST. Now swap the declaration %left TIMES in parser.mly with
the declaration %left PLUS. Recompile and reevaluate parse "1+2*3". How did the AST change? Before
moving on, restore the original declaration order.

Exercise: infer [★★]
Type inference for SimPL can be done in a much simpler way than for the larger language (with anonymous functions
and let expression) that we considered in the section on type inference.
Run make utop in the SimPL interpreter implementation. It will compile the interpreter and launch utop. Now, define
a function infer : string -> typ such that infer s parses s into an expression and infers the type of s in the
empty context. Your solution will make use of the typeof function. You don’t need constraint collection or unification.
Try out your infer function on these test cases:

• "3110"

• "1 <= 2"

• "let x = 2 in 20 + x"

Exercise: subexpression types [★★]
Suppose that a SimPL expression is well-typed in a context ctx. Are all of its subexpressions also well-typed in ctx?
For every subexpression, does there exist some context in which the subexpression is well-typed? Why or why not?

Exercise: typing [★★]
Use the SimPL type system to show that {} |- let x = 0 in if x <= 1 then 22 else 42 : int.

Exercise: substitution [★★]
What is the result of the following substitutions?

• (x + 1){2/x}

• (x + y){2/x}{3/y}

• (x + y){1/z}

• (let x = 1 in x + 1){2/x}

• (x + (let x=1 in x+1)){2/x}

• ((let x=1 in x+1) + x){2/x}

• (let x=y in x+1){2/y}

• (let x=x in x+1){2/x}

Exercise: step expressions [★]
Here is an example of evaluating an expression:
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7+5*2
--> (step * operation)

7+10
--> (step + operation)

17

There are two steps in that example, and we’ve annotated each step with a parenthetical comment to hint at which evalu-
ation rule we’ve used. We stopped evaluating when we reached a value.
Evaluate the following expressions using the small-step substitution model. Use the “long form” of evaluation that we
demonstrated above, in which you provide a hint as to which rule is applied at each step.

• (3 + 5) * 2 (2 steps)
• if 2 + 3 <= 4 then 1 + 1 else 2 + 2 (4 steps)

Exercise: step let expressions [★★]
Evaluate these expressions, again using the “long form” from the previous exercise.

• let x = 2 + 2 in x + x (3 steps)
• let x = 5 in ((let x = 6 in x) + x) (3 steps)
• let x = 1 in (let x = x + x in x + x) (4 steps)

Exercise: variants [★]
Evaluate these Core OCaml expressions using the small-step substitution model:

• Left (1+2) (1 step)
• match Left 42 with Left x -> x+1 | Right y -> y-1 (2 steps)

Exercise: application [★★]
Evaluate these Core OCaml expressions using the small-step substitution model:

• (fun x -> 3 + x) 2 (2 steps)
• let f = (fun x -> x + x) in (f 3) + (f 3) (6 steps)
• let f = fun x -> x + x in let x = 1 in let g = fun y -> x + f y in g 3 (7 steps)
• let f = (fun x -> fun y -> x + y) in let g = f 3 in (g 1) + (f 2 3) (9 steps)

Exercise: omega [★★★]
Try evaluating (fun x -> x x) (fun x -> x x). This expression, which is usually called Ω, doesn’t type check
in real OCaml, but we can still use the Core OCaml small-step semantics on it.

Exercise: pair parsing [★★★]
Add pairs (i.e., tuples with exactly two components) to SimPL. Implement lexing and parsing of pairs. Assume that the
parentheses around the pair are required (not optional, as they sometimes are in OCaml). Follow this strategy:
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• Add a constructor for pairs to the expr type.
• Add a comma token to the parser.
• Implement lexing the comma token.
• Implement parsing of pairs.

When you compile, you will get some inexhaustive pattern match warnings, because you have not yet implemented type
checking nor interpretation of pairs. But you can still try parsing them in utop with the parse function.

Exercise: pair type checking [★★★]
Implement type checking of pairs. Follow this strategy:

• Write down a new typing rule before implementing any code.
• Add a new constructor for pairs to the typ type.
• Add a new branch to typeof.

Exercise: pair evaluation [★★★]
Implement evaluation of pairs. Follow this strategy:

• Implement is_value for pairs. A pair of values (e.g., (0,1)) is itself a value, so the function will need to
become recursive.

• Implement subst for pairs: (e1, e2){v/x} = (e1{v/x}, e2{v/x}).
• Implement small-step and big-step evaluation of pairs, using these rules:

(e1, e2) --> (e1', e2)
if e1 --> e1'

(v1, e2) --> (v1, e2')
if e2 --> e2'

(e1, e2) ==> (v1, v2)
if e1 ==> v1
and e2 ==> v2

Exercise: desugar list [★]
Suppose we treat list expressions like syntactic sugar in the following way:

• [] is syntactic sugar for Left 0.
• e1 :: e2 is syntactic sugar for Right (e1, e2).

What is the Core OCaml expression to which [1; 2; 3] desugars?

Exercise: list not empty [★★]
Write a Core OCaml function not_empty that returns 1 if a list is non-empty and 0 if the list is empty. Use the
substitution model to check that your function behaves properly on these test cases:

• not_empty []
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• not_empty [1]

Exercise: generalize patterns [★★★★]
In Core OCaml, there are only two patterns: Left x and Right x, where x is a variable name. But in full OCaml,
patterns are far more general. Let’s see how far we can generalize patterns in Core OCaml.
Step 1: Here is a BNF grammar for patterns, and slightly revised BNF grammar for expressions:

p ::= i | (p1, p2) | Left p | Right p | x | _

e ::= ...
| match e with | p1 -> e1 | p2 -> e2 | ... | pn -> en

In the revised syntax for match, only the very first | on the line, immediately before the keyword match, is meta-syntax.
The remaining four | on the line are syntax. Note that we require | before the first pattern.
Step 2: A value vmatches a pattern p if by substituting any variables or wildcards in p with values, we can obtain exactly
v. For example:

• 2 matches x because x{2/x} is 2.
• Right(0,Left 0) matches Right(x,_) because Right(x,_){0/x}{Left 0/_} is Right(0,
Left 0).

Let’s define a new ternary relation called matches, guided by those examples:

v =~ p // s

Pronounce this relation as “v matches p producing substitutions s.”
Here, s is a sequence of substitutions, such as {0/x}{Left 3/y}{(1,2)/z}. There is just a single rule for this
relation:

v =~ p // s
if v = p s

For example,

2 =~ x // {2/x}
because 2 = x{2/x}

Step 3: To evaluate a match expression:
• Evaluate the expression being matched to a value.
• If that expression matches the first pattern, evaluate the expression corresponding to that pattern.
• Otherwise, match against the second pattern, the third, etc.
• If none of the patterns matches, evaluation is stuck: it cannot take any more steps.

Using those insights, complete the following evaluation rules by filling in the places marked with ???:

(* This rule should implement evaluation of e. *)
match e with | p1 -> e1 | p2 -> e2 | ... | pn -> en
--> ???

if ???

(continues on next page)
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(continued from previous page)

(* This rule implements moving past p1 to the next pattern. *)
match v with | p1 -> e1 | p2 -> e2 | ... | pn -> en
--> match v with | p2 -> e2 | ... | pn -> en

if there does not exist an s such that ???

(* This rule implements matching v with p1 then proceeding to evaluate e1. *)
match v with | p1 -> e1 | p2 -> e2 | ... | pn -> en
--> ??? (* something involving e1 *)

if ???

Note that we don’t need to write the following rule explicitly:

match v with | -/->

Evaluation will get stuck at that point because none of the three other rules above will apply.
Step 4: Double-check your rules by evaluating the following expression:
match (1 + 2, 3) with | (1,0) -> 4 | (1,x) -> x | (x,y) -> x + y

Exercise: let rec [★★★★]
One of the evaluation rules for let is

let x = v in e --> e{v/x}

We could try adapting that to let rec:

let rec x = v in e --> e{v/x} (* broken *)

But that rule doesn’t work properly, as we see in the following example:

let rec fact = fun x ->
if x <= 1 then 1 else x * (fact (x - 1)) in

fact 3

-->

(fun x -> if x <= 1 then 1 else x * (fact (x - 1)) 3

-->

if 3 <= 1 then 1 else 3 * (fact (3 - 1))

-->

3 * (fact (3 - 1))

-->

3 * (fact 2)

-/->
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We’re now stuck, because we need to evaluate fact, but it doesn’t step. In essence, the semantic rule we used “forgot”
the function value that should have been associated with fact.
A good way to fix this problem is to introduce a new language construct for recursion called simply rec. (Note that
OCaml does not have any construct that corresponds directly to rec.) Formally, we extend the syntax for expressions as
follows:

e ::= ...
| rec f -> e

and add the following evaluation rule:

rec f -> e --> e{(rec f -> e)/f}

The intuitive reading of this rule is that when evaluating rec f -> e, we “unfold” f in the body of e. For example,
here is an infinite loop coded with rec:

rec f -> f

--> (* step rec *)

f{(rec f -> f)/f}

= (* substitute *)

rec f -> f

--> (* step rec *)

f{(rec f -> f)/f}

...

Now we can use rec to implement let rec. Anywhere let rec appears in a program:

let rec f = e1 in e2

we desugar (i.e., rewrite) it to

let f = rec f -> e1 in e2

Note that the second occurrence of f (inside the rec) shadows the first one. Going back to the fact example, its
desugared version is

let fact = rec fact -> fun x ->
if x <= 1 then 1 else x * (fact (x - 1)) in

fact 3

Evaluate the following expression (17 steps, we think, though it does get pretty tedious). You may want to simplify your
life by writing “F” in place of (rec fact -> fun x -> if x <= 1 then 1 else x * (fact (x-1)))

let rec fact = fun x ->
if x <= 1 then 1 else x * (fact (x - 1)) in

fact 3

Use the following (capture-avoiding) substitution rules, which are similar to the rules for let and fun:
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(rec f -> e){v/x} = rec f -> e{v/x}
if x <> f
and f not in FV(v)

(rec f -> e){v/f} = rec f -> e

Exercise: simple expressions [★]
In the small-step substitution model, evaluation of an expression was rather list-like: we could write an evaluation in a
linear form like e --> e1 --> e2 --> ... --> en --> v. In the big-step environment model, evaluation is
instead rather tree-like: evaluations have a nested, recursive structure. Here’s an example:

<{}, (3 + 5) * 2> ==> 16 (op rule)
because <{}, (3 + 5)> ==> 8 (op rule)

because <{}, 3> ==> 3 (int const rule)
and <{}, 5> ==> 5 (int const rule)
and 3+5 is 8

and <{}, 2> ==> 2 (int const rule)
and 8*2 is 16

We’ve used indentation here to show the shape of the tree, and we’ve labeled each usage of one of the semantic rules.
Evaluate the following expressions using the big-step environment model. Use the notation for evaluation that we demon-
strated above, in which you provide a hint as to which rule is applied at each node in the tree.

• 110 + 3*1000 hint: three uses of the constant rule, two uses of the op rule

• if 2 + 3 < 4 then 1 + 1 else 2 + 2 hint: five uses of constant, three uses of op, one use of if(else)

Exercise: let and match expressions [★★]
Evaluate these expressions, continuing to use the tree notation, and continuing to label each usage of a rule.

• let x=0 in 1 hint: one use of let, two uses of constant

• let x=2 in x+1 hint: one use of let, two uses of constant, one use of op, one use of variable

• match Left 2 with Left x -> x+1 | Right x -> x-1 hint: one use of match(left), two uses of
constant, one use of op, one use of variable

Exercise: closures [★★]
Evaluate these expressions:

• (fun x -> x+1) 2 hint: one use of application, one use of anonymous function, two uses of constant, one use
of op, one use of variable

• let f = fun x -> x+1 in f 2 hint: one use of let, one use of anonymous function, one use of application,
two uses of variable, one use of op, two uses of constant

Exercise: lexical scope and shadowing [★★]
Evaluate these expressions:

• let x=0 in x + (let x=1 in x) hint: two uses of let, two uses of variable, one use of op, two uses of
constant

502 Chapter 11. Interpreters



OCaml Programming: Correct + Efficient + Beautiful

• let x=1 in let f=fun y -> x in let x=2 in f 0 hint: three uses of let, one use of anonymous
function, one use of application, two uses of variable, three uses of constant

Exercise: more evaluation [★★]
Evaluate these:

• let x = 2 + 2 in x + x

• let x = 1 in let x = x + x in x + x

• let f = fun x -> fun y -> x + y in let g = f 3 in g 2

• let f = fst ((let x = 3 in fun y -> x), 2) in f 0

Exercise: dynamic scope [★★★]
Use dynamic scope to evaluate the following expression. You do not need to write down all of the evaluation steps unless
you find it helpful. Compare your answer to the answer you would expect from a language with lexical scope.

let x = 5 in
let f y = x + y in
let x = 4 in
f 3

Exercise: more dynamic scope [★★★]
Use dynamic scope to evaluate the following expressions. Compare your answers to the answers you would expect from
a language with lexical scope.
Expression 1:

let x = 5 in
let f y = x + y in
let g x = f x in
let x = 4 in
g 3

Expression 2:

let f y = x + y in
let x = 3 in
let y = 4 in
f 2

Exercise: constraints [★★]
Show the derivation of the env |- e : t -| C relation for these expressions:

1. fun x -> ( + ) 1 x
2. fun b -> if b then false else true
3. fun x -> fun y -> if x <= y then y else x
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Exercise: unify [★★]
Use the unification algorithm to solve the following system of constraints. Your answer should be a substitution, in the
sense that the unification algorithm defines that term.

X = int
Y = X -> X

Exercise: unify more [★★★]
Use the unification algorithm to solve the following system of constraints. Your answer should be a substitution, in the
sense that the unification algorithm defines that term.

X -> Y = Y -> Z
Z = U -> W

Exercise: infer apply [★★★]
Using the HM type inference algorithm, infer the type of the following definition:

let apply f x = f x

Remember to go through these steps:
• desugar the definition entirely (i.e., construct an AST)
• collect constraints
• solve the constraints with unification

Exercise: infer double [★★★]
Using the HM type inference algorithm, infer the type of the following definition:

let double f x = f (f x)

Exercise: infer S [★★★★]
Using the HM type inference algorithm, infer the type of the following definition:

let s x y z = (x z) (y z)
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CHAPTER

TWELVE

THE CURRY-HOWARD CORRESPONDENCE

Note: A lagniappe is a small and unexpected gift — a little “something extra”. Please enjoy this little chapter, which
contains one of the most beautiful results in the entire book. It is based on the paper Propositions as Types by Philip
Wadler. You can watch an entertaining recorded lecture by Prof. Wadler on it, in addition to our lecture below.

As we observed long ago, OCaml is a language in the ML family, and ML was originally designed as the meta language
for a theorem prover—that is, a computer program designed to help prove and check the proofs of logical formulas. When
constructing proofs, it’s desirable to make sure that you can only prove true formulas, to make sure that you don’t make
incorrect arguments, etc.
The dream would be to have a computer program that can determine the truth or falsity of any logical formula. For some
formulas, that is possible. But, one of the groundbreaking results in the early 20th century was that it is not possible, in
general, for a computer program to do this. Alonzo Church and Alan Turing independently showed this in 1936. Church
used the lambda calculus as a model for computers; Turing used what we now call Turing machines. The Church-Turing
thesis is a hypothesis that says the lambda calculus and Turing machines both formalize what “computation” informally
means.
Instead of focusing on that impossible task, we’re going to focus on the relationship between proofs and programs. It turns
out the two are deeply connected in a surprising way.

12.1 Computing with Evidence

We’re accustomed to OCaml programs that manipulate data, such as integers and variants and functions. Those data
values are always typed: at compile time, OCaml infers (or the programmer annotates) the types of expressions. For
example, 3110 : int, and [] : 'a list. We long ago learned to read those as “3110 has type int”, and “[]
has type 'a list”.
Let’s try a different reading now. Instead of “has type”, let’s read “is evidence for”. So, 3110 is evidence for int. What
does that mean? Think of a type as a set of values. So, 3110 is evidence that type int is not empty. Likewise, [] is
evidence that the type 'a list is not empty. We say that the type is inhabited if it is not empty.
Are there empty types? There actually is one in OCaml, though we’ve never had reason to mention it before. It’s possible
to define a variant type that has no constructors:

type empty = |

type empty = |

We could have called that type anything we wanted instead of empty; the special syntax there is just writing | instead of
actual constructors. (Note, that syntax might give some editors some trouble. You might need to put double-semicolon
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after it to get the formatting right.) It is impossible to construct a value of type empty, exactly because it has no
constructors. So, empty is not inhabited.
Under our new reading based on evidence, we could think about functions as ways to manipulate and transform evidence—
just as we are already accustomed to thinking about functions as ways to manipulate and transform data. For example,
the following functions construct and destruct pairs:

let pair x y = (x, y)
let fst (x, y) = x
let snd (x, y) = y

val pair : 'a -> 'b -> 'a * 'b = <fun>

val fst : 'a * 'b -> 'a = <fun>

val snd : 'a * 'b -> 'b = <fun>

We could think of pair as a function that takes in evidence for 'a and evidence for 'b, and gives us back evidence
for 'a * 'b. That latter piece of evidence is the pair (x, y) containing the individual pieces of evidence, x and y.
Similarly, fst and snd extract the individual pieces of evidence from the pair. Thus,

• If you have evidence for 'a and evidence for 'b, you can produce evidence for 'a and 'b.
• If you have evidence for 'a and 'b, then you can produce evidence for 'a.
• If you have evidence for 'a and 'b, then you can produce evidence for 'b.

In learning to do proofs (say, in a discrete mathematics class), you will have learned that in order to prove two statements
hold, you individually have to prove that each holds. That is, to prove the conjunction of A and B, you must prove A as
well as prove B. Likewise, if you have a proof of the conjunction of A and B, then you can conclude A holds, and you
can conclude B holds. We can write those patterns of reasoning as logical formulas, using /\ to denote conjunction and
-> to denote implication:

A -> B -> A /\ B
A /\ B -> A
A /\ B -> B

Proofs are a form of evidence: they are logical arguments about the truth of a statement. So another reading of those
formulas would be:

• If you have evidence for A and evidence for B, you can produce evidence for A and B.
• If you have evidence for A and B, then you can produce evidence for A.
• If you have evidence for A and B, then you can produce evidence for B.

Notice how we now have given the same reading for programs and for proofs. They are both ways of manipulating and
transforming evidence. In fact, take a close look at the types for pair, fst, and snd compared to the logical formulas
that describe valid patterns of reasoning:

val pair : 'a -> 'b -> 'a * 'b A -> B -> A /\ B
val fst : 'a * 'b -> 'a A /\ B -> A
val snd : 'a * 'b -> 'b A /\ B -> B

If you replace 'a with A, and 'b with B, and * with /\, the types of the programs are identical to the formulas!
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12.2 The Correspondence

What we have just discovered is that computing with evidence corresponds to constructing valid logical proofs. This
correspondence is not just an accident that occurs with these three specific programs. Rather, it is a deep phenomenon
that links the fields of programming and logic. Aspects of it have been discovered by many people working in many
areas. So, it goes by many names. One common name is the Curry-Howard correspondence, named for logicians Haskell
Curry (for whom the functional programming language Haskell is named) and William Howard. This correspondence
links ideas from programming to ideas from logic:

• Types correspond to logical formulas (aka propositions).
• Programs correspond to logical proofs.
• Evaluation corresponds to simplification of proofs.

We’ve already seen the first two of those correspondences. The types of our three little programs corresponded to formulas,
and the programs themselves corresponded to the reasoning done in proofs involving conjunctions. We haven’t seen the
third yet; we will later.
Let’s dig into each of the correspondences to appreciate them more fully.

12.3 Types Correspond to Propositions

In propositional logic, formulas are created with atomic propositions, negation, conjunction, disjunction, and implication.
The following BNF describes propositional logic formulas:

p ::= atom
| ~ p (* negation *)
| p /\ p (* conjunction *)
| p \/ p (* disjunction *)
| p -> p (* implication *)

atom ::= <identifiers>

For example, raining /\ snowing /\ cold is a proposition stating that it is simultaneously raining and snowing
and cold (a weather condition known as Ithacating). An atomic proposition might hold of the world, or not. There are
two distinguished atomic propositions, written true and false, which are always hold and never hold, respectively.
All these connectives (so-called because they connect formulas together) have correspondences in the types of functional
programs.
Conjunction. We have already seen that the /\ connective corresponds to the * type constructor. Proposition A /\ B
asserts the truth of both A and B. An OCaml value of type a * b contains values both of type a and b. Both /\ and *
thus correspond to the idea of pairing or products.
Implication. The implication connective -> corresponds to the function type constructor ->. Proposition A -> B
asserts that if you can show that A holds, then you can show that B holds. In other words, by assuming A, you can
conclude B. In a sense, that means you can transform A into B. An OCaml value of type a -> b expresses that idea
even more clearly. Such a value is a function that transforms a value of type a into a value of type b. Thus, if you can
show that a is inhabited (by exhibiting a value of that type), you can show that b is inhabited (by applying the function
of type a -> b to it). So, -> corresponds to the idea of transformation.
Disjunction. The disjunction connective \/ corresponds to something a little more difficult to express concisely in
OCaml. Proposition A \/ B asserts that either you can show A holds or B holds. Let’s strengthen that to further assert
that in addition to showing one of them holds, you have to specify which one you are showing. Why would that matter?

12.2. The Correspondence 509

https://www.urbandictionary.com/define.php?term=Ithacating


OCaml Programming: Correct + Efficient + Beautiful

Suppose we were working on a proof of the twin prime conjecture, an unsolved problem that states there are infinitely many
twin primes (primes of the form 𝑛 and 𝑛 + 2, such as 3 and 5, or 5 and 7). Let the atomic proposition TP denote that
there are infinitely many twin primes. Then the proposition TP \/ ~ TP seems reasonable: either there are infinitely
many twin primes, or there aren’t. We wouldn’t even have to figure out how to prove the conjecture! But if we strengthen
the meaning of \/ to be that we have to state which one of the sides, left or right, holds, then we would either have to give
a proof or disproof of the conjecture. No one knows how to do that currently. So we could not prove TP \/ ~ TP.
Henceforth we will use \/ in that stronger sense of having to identify whether we are giving a proof of the left or the
right side proposition. Thus, we can’t necessarily conclude p \/ ~ p for any proposition p: it will matter whether we
can prove p or ~ p on their own. Technically, this makes our propositional logic constructive rather than classical. In
constructive logic we must construct the proof of the individual propositions. Classical logic (the traditional way \/ is
understood) does not require that.
Returning to the correspondence between disjunction and variants, consider this variant type:

type ('a, 'b) disj = Left of 'a | Right of 'b

type ('a, 'b) disj = Left of 'a | Right of 'b

A value v of that type is either Left a, where a : 'a; or Right b, where b : 'b. That is, v identifies (i)
whether it is tagged with the left constructor or the right constructor, and (ii) carries within it exactly one sub-value of
type either 'a or 'b—not two subvalues of both types, which is what 'a * 'b would be.
Thus, the (constructive) disjunction connective \/ corresponds to the disj type constructor. Proposition A \/ B
asserts that either A or B holds as well as which one, left or right, it is. An OCaml value of type ('a, 'b) disj
similarly contains a value of type either 'a or 'b as well as identifying (with the Left or Right constructor) which
one it is. Both \/ and disj therefore correspond to the idea of unions.
Truth and Falsity The atomic proposition true is the only proposition that is guaranteed to always hold. There are
many types in OCaml that are always inhabited, but the simplest of all of them is unit: there is one value () of type
unit. So the proposition true (best) corresponds to the type unit.
Likewise, the atomic proposition false is the only proposition that is guaranteed to never hold. That corresponds to the
empty type we introduced earlier, which has no constructors. (Other names for that type could include zero or void,
but we’ll stick with empty.)
There is a subtlety with empty that we should address. The type has no constructors, but it is nonetheless possible to
write expressions that have type empty. Here is one way:

let rec loop x = loop x

val loop : 'a -> 'b = <fun>

Now if you enter this code in utop you will get no response:

let e : empty = loop ()

That expression type checks successfully, then enters an infinite loop. So, there is never any value of type empty that is
produced, even though the expression has that type.
Here is another way:

let e : empty = failwith ""
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Exception: Failure "".
Raised at Stdlib.failwith in file "stdlib.ml", line 29, characters 17-33
Called from unknown location
Called from Stdlib__Fun.protect in file "fun.ml", line 33, characters 8-15
Re-raised at Stdlib__Fun.protect in file "fun.ml", line 38, characters 6-52
Called from Topeval.load_lambda in file "toplevel/byte/topeval.ml", line 89,␣

↪characters 4-150

Again, the expression type checks, but it never produces an actual value of type empty. Instead, this time an exception
is produced.
So the type empty is not inhabited, even though there are some expressions of that type. But, if we require programs
to be total, we can rule out those expressions. That means eliminating programs that raise exceptions or go into an infinite
loop. We did in fact make that requirement when we started discussing formal methods, and we will continue to assume
it.
Negation. This connective is the trickiest. Let’s consider negation to actually be syntactic sugar. In particular, let’s say
that the propositional formula ~ p actually means this formula instead: p -> false. Why? The formula ~ p should
mean that p does not hold. So if p did hold, then it would lead to a contradiction. Thus, given p, we could conclude
false. This is the standard way of understanding negation in constructive logic.
Given that syntactic sugar, ~ p therefore corresponds to a function type whose return type is empty. Such a function
could never actually return. Given our ongoing assumption that programs are total, that must mean it’s impossible to
even call that function. So, it must be impossible to construct a value of the function’s input type. Negation therefore
corresponds to the idea of impossibility, or contradiction.
Propositions as types. We have now created the following correspondence that enables us to read propositions as types:

• /\ and *
• -> and ->
• \/ and disj
• true and unit
• false and empty
• ~ and ... -> false

But that is only the first level of the Curry-Howard correspondence. It goes deeper…

12.4 Programs Correspond to Proofs

We have seen that programs and proofs are both ways to manipulate and transform evidence. In fact, every program is a
proof that the type of the program is inhabited, since the type checker must verify that the program is well-typed.
The details of type checking, though, lead to an even more compelling correspondence between programs and proofs.
Let’s restrict our attention to programs and proofs involving just conjunction and implication, or equivalently, pairs and
functions. (The other propositional connectives could be included as well, but require additional work.)
Type checking rules. For type checking, we gave many rules to define when a program is well-typed. Here are rules for
variables, functions, and pairs:

{x : t, ...} |- x : t

A variable has whatever type the environment says it has.
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env |- fun x -> e : t -> t'
if env[x -> t] |- e : t'

An anonymous function fun x -> e has type t -> t' if e has type t' in a static environment extended to bind x
to type t.

env |- e1 e2 : t'
if env |- e1 : t -> t'
and env |- e2 : t

An application e1 e2 has type t' if e1 has type t -> t' and e2 has type t.

env |- (e1, e2) : t1 * t2
if env |- e1 : t1
and env |- e2 : t2

The pair (e1, e2) has type t1 * t2 if e1 has type t1 and e2 has type t2.

env |- fst e : t1
if env |- e : t1 * t2

env |- snd e : t2
if env |- e : t1 * t2

If e has type t1 * t2, then fst e has type t1, and snd e has type t2.
Proof trees. Another way of expressing those rules would be to draw proof trees that show the recursive application of
rules. Here are those proof trees:

---------------------
{x : t, ...} |- x : t

env[x -> t1] |- e2 : t2
-----------------------------
env |- fun x -> e2 : t1 -> t2

env |- fun x -> e2 : t1 -> t2 env |- e1 : t1
---------------------------------------------------

env |- (fun x -> e2) e1 : t2

env |- e1 : t1 env |- e2 : t2
-------------------------------------

env |- (e1, e2) : t1 * t2

env |- e : t1 * t2
------------------
env |- fst e : t1

env |- e : t1 * t2
------------------
env |- snd e : t2
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Proof trees, logically. Let’s rewrite each of those proof trees to eliminate the programs, leaving only the types. At the
same time, let’s use the propositions-as-types correspondence to re-write the types as propositions:

-----------
env, p |- p

env, p1 |- p2
---------------
env |- p1 -> p2

env |- p1 -> p2 env |- p1
-----------------------------

env |- p2

env |- p1 env |- p2
------------------------

env |- p1 /\ p2

env |- p1 /\ p2
---------------

env |- p1

env |- p1 /\ p2
---------------

env |- p2

Each rule can now be read as a valid form of logical reasoning. Whenever we write env |- t, it means that “from the
assumptions in env, we can conclude p holds”. A rule, as usual, means that from all the premisses above the line, the
conclusion below the line holds.
Proofs and programs. Now consider the following proof tree, showing the derivation of the type of a program:

------------------------ ------------------------
{p : a * b} |- p : a * b {p : a * b} |- p : a * b
------------------------ ------------------------
{p : a * b} |- snd p : b {p : a * b} |- fst p : a
-----------------------------------------------------------

{p : a * b} |- (snd p, fst p) : b * a
----------------------------------------------
{} |- fun p -> (snd p, fst p) : a * b -> b * a

That program shows that you can swap the components of a pair, thus swapping the types involved.
If we erase the program, leaving only the types, and re-write those as propositions, we get this proof tree:

---------------- ----------------
a /\ b |- a /\ b a /\ b |- a /\ b
---------------- ----------------

a /\ b |- b a /\ b |- a
-------------------------------------------

a /\ b |- b /\ a
----------------------
{} |- a /\ b -> b /\ a
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And that is a valid proof tree for propositional logic. It shows that you can swap the sides of a conjunction.
What we see from those two proof trees is: a program is a proof. A well-typed program corresponds to the proof of a
logical proposition. It shows how to compute with evidence, in this case transforming a proof of a /\ b into a proof of
b /\ a.
Programs are proofs. We have now created the following correspondence that enables us to read programs as proofs:

• A program e : t corresponds to a proof of the logical formula to which t itself corresponds.
• The proof tree of |- t corresponds to the proof tree of {} |- e : t.
• The proof rules for typing a program correspond to the rules for proving a proposition.

But that is only the second level of the Curry-Howard correspondence. It goes deeper…

12.5 Evaluation Corresponds to Simplification

We will treat this part of the correspondence only briefly. Consider the following program:

fst (a, b)

That program would of course evaluate to a.
Next, consider the typing derivation of that program. The variables a and b must be bound to some types in the static
environment for the program to type check.

------------------------ -------------------------
{a : t, b : t'} |- a : t {a : t, b : t'} |- b : t'
----------------------------------------------------------

{a : t, b : t'} |- (a, b) : t * t'
----------------------------------
{a : t, b : t'} |- fst (a, b) : t

Erasing that proof tree to just the propositions, per the proofs-as-programs correspondence, we get this proof tree:

----------- -----------
t, t' |- t t, t' |- t'
----------------------------------

t, t' |- t /\ t'
----------------

t, t' |- t

However, there is a much simpler proof tree with the same conclusion:

----------
t, t' |- t

In other words, we don’t need the detour through proving t /\ t' to prove t, if t is already an assumption. We can
instead just directly conclude t.
Likewise, there is a simpler typing derivation corresponding to that same simpler proof:

------------------------
{a : t, b : t'} |- a : t
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Note that typing derivation is for the program a, which is exactly what the bigger program fst (a, b) evaluates to.
Thus, evaluation of the program causes the proof tree to simplify, and the simplified proof tree is actually (through the
proofs-as programs correspondence) a simpler proof of the same proposition. Evaluation therefore corresponds to
proof simplification. And that is the final level of the Curry-Howard correspondence.

12.6 What It All Means

Logic is a fundamental aspect of human inquiry. It guides us in reasoning about the world, in drawing valid infer-
ences, in deducing what must be true vs. what must be false. Training in logic and argumentation—in various fields and
disciplines—is one of the most important parts of a higher education.
The Curry-Howard correspondence shows that logic and computation are fundamentally linked in a deep and maybe even
mysterious way. The basic building blocks of logic (propositions, proofs) turn out to correspond to the basic building
blocks of computation (types, functional programs). Computation itself, the evaluation or simplification of expressions,
turns out to correspond to simplification of proofs. The very task that computers do therefore is the same task that humans
do in trying to present a proof in the best possible way.
Computation is thus intrinsically linked to reasoning. And functional programming is a fundamental part of human
inquiry.
Could there be a better reason to study functional programming?

12.7 Exercises

Solutions to most exercises are available. We are happy to add or correct solutions. Please make contributions through
GitHub.

Exercise: propositions as types [★★]
For each of the following propositions, write its corresponding type in OCaml.

• true -> p

• p /\ (q /\ r)

• (p \/ q) \/ r

• false -> p

Exercise: programs as proofs [★★★]
For each of the following propositions, determine its corresponding type in OCaml, then write an OCaml let definition
to give a program of that type. Your program proves that the type is inhabited, which means there is a value of that type.
It also proves the proposition holds.

• p /\ q -> q /\ p

• p \/ q -> q \/ p

Exercise: evaluation as simplification [★★★]
Consider the following OCaml program:
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let f x = snd ((fun x -> x, x) (fst x))

• What is the type of that program?
• What is the proposition corresponding to that type?
• How would f (1,2) evaluate in the small-step semantics?
• What simplified implementation of f does that evaluation suggest? (or perhaps there are several, though one is
probably the simplest?)

• Does your simplified f still have the same type as the original? (It should.)
Your simplified f and the original f are both proofs of the same proposition, but evaluation has helped you to produce a
simpler proof.
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CHAPTER

THIRTEEN

BIG-OH NOTATION

What does it mean to be efficient? Cornell professors Jon Kleinberg and Eva Tardos have a wonderful explanation in
chapter 2 of their textbook, Algorithm Design (2006). This appendix is a summary and reinterpretation of that explanation
from a functional programming perspective. The ultimate answer will be that an algorithm is efficient if its worst-case
running time on input size 𝑛 is 𝑂(𝑛𝑑) for some constant 𝑑. But it will take us several steps to build up to that definition.

13.1 Algorithms and Efficiency, Attempt 1

A naive attempt at defining efficiency might proceed as follows:
Attempt 1: An algorithm is efficient if, when implemented, it runs in a small amount of time on particular input instances.
But there are many problems with that definition, such as:

• Inefficient algorithms can run quickly on small test cases.
• Fast processors and optimizing compilers can make inefficient algorithms run quickly.
• Efficient algorithms can run slowly when coded sloppily.
• Some input instances are harder than others.
• Efficiency on small inputs doesn’t imply efficiency on large inputs.
• Some clients can afford to be more patient than others; quick for me might be slow for you.

Lesson 1: One lesson learned from that attempt is: time measured by a clock is not the right metric for algorithm
efficiency. We need a metric that is reasonably independent of the hardware, compiler, other software that is running,
etc. Perhaps a good metric would be to give up on time and instead count the number of steps taken during evaluation.
But, now we have a new problem: how should we define a “step”? It needs to be something machine independent. It
ought to somehow represent a primitive unit of computation. There’s a lot of flexibility. Here are some common choices:

• In pseudocode, we might think of a step as being a single line.
• In imperative languages, wemight count assignments, array indexes, pointer dereferences, and arithmetic operations
as steps.

• In OCaml, we could count function or operator application, let bindings, and choosing a branch of an if or match
as steps.

In reality, all of those “steps” could really take a different amount of time. But in practice, that doesn’t really matter much.
Lesson 2: Another lesson we learned from attempt 1 was: running time on a particular input instance is not the right
metric. We need a metric that can predict running time on any input instance. So instead of using the particular input
(e.g., a number, or a matrix, or a text document), it might be better to use the size of the input (e.g., the number of bits it
takes to represent the number, or the number of rows and columns in the matrix, or the number of bytes in the document)
as the metric.
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But again we have a new problem: how to define “size”? As in the examples we just gave, size should be some measure
of how big an input is compared to other inputs. Perhaps the most common representation of size in the context of data
structures is just the number of elements maintained by the data structure: the number of nodes in a list, or the number
of nodes and edges in a graph, etc.
Could an algorithm run in a different amount of time on two inputs of the same “size”? Sure. For example, multiplying
a matrix by all zeros might be faster than multiplying by arbitrary numbers. But in practice, size matters more than exact
inputs.
Lesson 3: A third lesson we learned from attempt 1 was that “small amount of time” is too relative a term. We want a
metric that is reasonably objective, rather than relying on subjective notions of what constitutes “small”.
One sort-of-okay idea would be that an efficient algorithm needs to beat brute-force search. That means enumerating
all answers one-by-one, checking each to see whether it’s right. For example, a brute-force sorting algorithm would
enumerate every possible permutation of a list, checking to see whether it’s a sorted version of the input list. That’s a
terrible sorting algorithm! Certainly quicksort beats it.
Brute-force search is the simple, dumb solution to nearly any algorithmic problem. But it requires enumeration of a huge
space. In fact, an exponentially-sized space. So a better idea would be doing less than exponential work. What’s less than
exponential (e.g., 2𝑛)? One possibility is polynomial (e.g., 𝑛2).
An immediate objection might be that polynomials come in all sizes. For example, 𝑛100 is way bigger than 𝑛2. And some
non-polynomials, such as 𝑛1+.02(log𝑛), might do an adequate job of beating exponentials. But in practice, polynomials do
seem to work fine.

13.2 Algorithms and Efficiency, Attempt 2

Combining lessons 1 through 3 from Attempt 1, we have a second attempt at defining efficiency:
Attempt 2: An algorithm is efficient if its maximum number of execution steps is polynomial in the size of its input.
Note how all three ideas come together there: steps, size, polynomial.
But if we try to put that definition to use, it still isn’t perfect. Coming up with an exact formula for the maximum number of
execution steps can be insanely tedious. For example, in one other algorithm textbook, the authors develop this following
polynomial for the number of execution steps taken by a pseudocode implementation of insertion sort:

𝑐1𝑛 + 𝑐2(𝑛 − 1) + 𝑐4(𝑛 − 1) + 𝑐5
𝑛

∑
𝑗=2

𝑡𝑗 + 𝑐6
𝑛

∑
𝑗=2

(𝑡𝑗 − 1) + 𝑐7
𝑛

∑
𝑗=2

(𝑡𝑗 − 1) + 𝑐8(𝑛 − 1)

No need for us to explain what all the variables mean. It’s too complicated. Our hearts go out to the poor grad student
who had to work out that one!

Note: That formula for running time of insertion sort is from Introduction to Algorithms, 3rd edition, 2009, by Cor-
men, Leiserson, Rivest, and Stein. We aren’t making fun of them. They would also tell you that such formulas are too
complicated.

Precise execution bounds like that are exhausting to find and somewhat meaningless. If it takes 25 steps in Java pseu-
docode, but compiled down to RISC-V would take 250 steps, is the precision useful?
In some cases, yes. If you’re building code that flies an airplane or controls a nuclear reactor, you might actually care
about precise, real-time guarantees.
But otherwise, it would be better for us to identify broad classes of algorithms with similar performance. Instead of saying
that an algorithm runs in

1.62𝑛2 + 3.5𝑛 + 8
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steps, how about just saying it runs in 𝑛2 steps? That is, we could ignore the low-order terms and the constant factor of
the highest-order term.
We ignore low-order terms because we want to THINK BIG. Algorithm efficiency is all about explaining the performance
of algorithms when inputs get really big. We don’t care so much about small inputs. And low-order terms don’t matter
when we think big. The following table shows the number of steps as a function of input size N, assuming each step takes
1 microsecond. “Very long” means more than the estimated number of atoms in the universe.

𝑁 𝑁2 𝑁3 2𝑁

N=10 < 1 sec < 1 sec < 1 sec < 1 sec
N=100 < 1 sec < 1 sec 1 sec 1017 years
N=1,000 < 1 sec 1 sec 18 min very long
N=10,000 < 1 sec 2 min 12 days very long
N=100,000 < 1 sec 3 hours 32 years very long
N=1,000,000 1 sec 12 days 104 years very long

As you can see, when inputs get big, there’s a serious difference between each column of the table. We might as well
ignore low-order terms, because they are completely dominated by the highest-order term when we think big.
What about constant factors? My current laptop might be 2x faster (that is, a constant factor of 2) than the one I bought
several years ago, but that’s not an interesting property of the algorithm. Likewise, 1.62𝑛2 steps in pseduocode might be
1620𝑛2 steps in assembly (that is, a constant factor of 1000), but it’s again not an interesting property of the algorithm.
So, should we really care if one algorithm takes 2x or 1000x longer than another, if it’s just a constant factor?
The answer is: maybe. Performance tuning in real-world code is about getting the constants to be small. Your employer
might be really happy if you make something run twice as fast! But that’s not about the algorithm. When we’re measuring
algorithm efficiency, in practice the constant factors just don’t matter much.
So all that argues for having an imprecise abstraction to measure running time. Instead of 1.62𝑛2 + 3.5𝑛 + 8, we can
just write 𝑛2. Imprecise abstractions are nothing new to you. Youmight write±1 to imprecisely abstract a quantity within
1. In computer science, you already know that we use Big-Oh notation as an imprecise abstraction: 1.62𝑛2 + 3.5𝑛 + 8
is 𝑂(𝑛2).

13.3 Big-Ell Notation

Before reviewing Big-Oh notation, let’s start with something simpler that you might not have seen before: Big-Ell notation.
Big-Ell is an imprecise abstraction of natural numbers less than or equal to another number, hence the L. It’s defined as
follows:

𝐿(𝑛) = {𝑚 ∣ 0 ≤ 𝑚 ≤ 𝑛}

where𝑚 and 𝑛 are natural numbers. That is, 𝐿(𝑛) represents all the natural numbers less than or equal to 𝑛. For example,
𝐿(5) = {0, 1, 2, 3, 4, 5}.
Could you do arithmetic with Big-Ell? For example, what would 1 + 𝐿(5) be? It’s not a well-posed question, to be
honest: addition is an operation we think of being defined on integers, not sets of integers. But a reasonable interpretation
of 1 + {0, 1, 2, 3, 4, 5} could be doing the addition for each element in the set, yielding {1, 2, 3, 4, 5, 6}. Note that
{1, 2, 3, 4, 5, 6} is a proper subset of {0, 1, 2, 3, 4, 5, 6}, and the latter is 𝐿(6). So we could say that 1 + 𝐿(5) ⊆ 𝐿(6).
We could even say that 1 + 𝐿(5) ⊆ 𝐿(7), but it’s not tight: the former subset relation included the fewest possible extra
elements, whereas the latter was loose by needlessly including extra.
For more about Big Ell, see Concrete Mathematics, chapter 9, 1989, by Graham, Knuth, and Patashnik.
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13.4 Big-Oh Notation

If you understand Big-Ell, and you understand functional programming, here’s some good news: you can easily understand
Big-Oh.
Let’s build up the definition of Big-Oh in a few steps. We’ll start with version 1, which we’ll write as 𝑂1. It’s based on 𝐿:

• 𝐿(𝑛) represents any natural number that is less than or equal to a natural number 𝑛.
• 𝑂1(𝑔) represents any natural function that is less than or equal to a natural function 𝑔.

A natural function is just a function on natural numbers; that is, its type is ℕ → ℕ.
All we do with 𝑂1 is upgrade from natural numbers to natural functions. So Big-Oh version 1 is just the higher-order
version of Big-Ell. How about that!
Of course, we need to work out what it means for a function to be less than another function. Here’s a reasonable
formalization:
Big-Oh Version 1: 𝑂1(𝑔) = {𝑓 ∣ ∀𝑛 . 𝑓(𝑛) ≤ 𝑔(𝑛)}
For example, consider the function that doubles its input. In math textbooks, that function might be written as 𝑔(𝑛) = 2𝑛.
In OCaml we would write let g n = 2 * n or let g = fun n -> 2 * n or just anonymously as fun n
-> 2 * n. In math that same anonymous function would be written with lambda notation as 𝜆𝑛.2𝑛. Proceeding with
lambda notation, we have:

𝑂1(𝜆𝑛.2𝑛) = {𝑓 ∣ ∀𝑛 . 𝑓(𝑛) ≤ 2𝑛}

and therefore
• (𝜆𝑛.𝑛) ∈ 𝑂1(𝜆𝑛.2𝑛),
• (𝜆𝑛. 𝑛

2 ) ∈ 𝑂1(𝜆𝑛.2𝑛), but
• (𝜆𝑛.3𝑛) ∉ 𝑂1(𝜆𝑛.2𝑛).

Next, recall that in defining algorithmic efficiency, we wanted to ignore constant factors. 𝑂1 does not help us with that.
We’d really like for all these functions:

• (𝜆𝑛.𝑛)
• (𝜆𝑛.2𝑛)
• (𝜆𝑛.3𝑛)

to be in 𝑂(𝜆𝑛.𝑛).
Toward that end, let’s define 𝑂2 to ignore constant factors:
Big-Oh Version 2: 𝑂2(𝑔) = {𝑓 ∣ ∃𝑐 > 0∀𝑛 . 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)}
That existentially-quantified positive constant 𝑐 lets us “bump up” the function 𝑔 to whatever constant factor we need. For
example,

𝑂2(𝜆𝑛.𝑛3) = {𝑓 ∣ ∃𝑐 > 0∀𝑛 . 𝑓(𝑛) ≤ 𝑐𝑛3}

and therefore (𝜆𝑛.3𝑛3) ∈ 𝑂2(𝜆𝑛.𝑛3), because 3𝑛3 ≤ 𝑐𝑛3 if we take 𝑐 = 3, or 𝑐 = 4, or any larger 𝑐.
Finally, recall that we don’t care about small inputs: we want to THINK BIG when we analyze algorithmic efficiency. It
doesn’t matter whether the running time of an algorithm happens to be a little faster or a little slower for small inputs.
In fact, we could just hardcode a lookup table for those small inputs if the algorithm is too slow on them! What matters
really is the performance on big-sized inputs.
Toward that end, let’s define 𝑂3 to ignore small inputs:

522 Chapter 13. Big-Oh Notation



OCaml Programming: Correct + Efficient + Beautiful

Big-Oh Version 3: 𝑂3(𝑔) = {𝑓 ∣ ∃𝑐 > 0∃𝑛0 > 0∀𝑛 ≥ 𝑛0 . 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)}
That existentially quantified positive constant 𝑛0 lets us “ignore” all inputs of that size or smaller. For example,

𝑂3(𝜆𝑛.𝑛2) = {𝑓 ∣ ∃𝑐 > 0∃𝑛0 > 0∀𝑛 ≥ 𝑛0 . 𝑓(𝑛) ≤ 𝑐𝑛2}

and therefore (𝜆𝑛.2𝑛) ∈ 𝑂3(𝜆𝑛.𝑛2), because 2𝑛 ≤ 𝑐𝑛2 if we take 𝑐 = 2 and 𝑛0 = 2. Note how we get to ignore the
fact that 𝜆𝑛.2𝑛 is temporarily a little too big at 𝑛 = 1 by picking 𝑛0 = 2. That’s the power of ignoring “small” inputs.

13.5 Big-Oh, Finished

Version 3 is the right definition of Big-Oh. We repeat it here, for real:
Big-Oh: 𝑂(𝑔) = {𝑓 ∣ ∃𝑐 > 0∃𝑛0 > 0∀𝑛 ≥ 𝑛0 . 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)}
That’s the final, important version you should know. But don’t just memorize it. If you understand the derivation we gave
here, you’ll be able to recreate it from scratch anytime you need it.
Big-Oh is called an asymptotic upper bound. If 𝑓 ∈ 𝑂(𝑔), then 𝑓 is at least as efficient as 𝑔, and might be more efficient.

13.6 Big-Oh Notation Warnings

Warning 1. Because it’s an upper bound, we can always inflate a Big-Oh statement: for example, if 𝑓 ∈ 𝑂(𝑛2), then also
𝑓 ∈ 𝑂(𝑛3), and 𝑓 ∈ 𝑂(2𝑛), etc. But our goal is always to give tight upper bounds, whether we explicitly say that or not.
So when asked what the running time of an algorithm is, you must always give the tightest bound you can with Big-Oh.
Warning 2. Instead of 𝑂(𝑔) = {𝑓 ∣ …}, most authors instead write 𝑂(𝑔(𝑛)) = {𝑓(𝑛) ∣ …}. They don’t really mean
𝑔 applied to 𝑛. They mean a function 𝑔 parameterized on input 𝑛 but not yet applied. This is badly misleading and
generally a result of not understanding anonymous functions. Moral of that story: more people need to study functional
programming.
Warning 3. Instead of 𝜆𝑛.2𝑛 ∈ 𝑂(𝜆𝑛.𝑛2) nearly all authors write 2𝑛 = 𝑂(𝑛2). This is a hideous and inexcusable abuse
of notation that should never have been allowed and yet has permanently infected the computer science consciousness.
The standard defense is that = here should be read as “is” not as “equals”. That is patently ridiculous, and even those who
make that defense usually have the good grace to admit it’s nonsense. Sometimes we become stuck with the mistakes of
our ancestors. This is one of those times. Be careful of this “one-directional equality” and, if you ever have a chance,
teach your (intellectual) children to do better.

13.7 Algorithms and Efficiency, Attempt 3

Let’s review. Our first attempt at defining efficiency was:
Attempt 1: An algorithm is efficient if, when implemented, it runs in a small amount of time on particular input instances.
By replacing time with steps, particular instances with input size, and small with polynomial, we improved that to:
Attempt 2: An algorithm is efficient if its maximum number of execution steps is polynomial in the size of its input.
And that’s really a pretty good definition. But using Big-Oh notation to make it a little more concrete, we can produce
our third and final attempt:
Attempt 3: An algorithm is efficient if its worst-case running time on input size 𝑛 is 𝑂(𝑛𝑑) for some constant 𝑑.
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By “worst-case running time” we mean the same thing as “maximum number of execution steps”, just expressed in
different and probably more common words. The worst-case is when execution takes the longest. “Time” is a common
euphemism here for execution steps, and is used to emphasize we’re thinking about how long a computation takes.
Space is the most common other feature of efficiency to consider. Algorithms can be more or less efficient at requiring
constant or linear space, for example. You’re already familiar with that from tail recursion and lists in OCaml.
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CHAPTER

FOURTEEN

VIRTUAL MACHINE

A virtual machine is what the name suggests: a machine running virtually inside another machine. With virtual machines,
there are two operating systems involved: the host operating system (OS) and the guest OS. The host is your own native
OS (maybe Windows). The guest is the OS that runs inside the host.
The virtual machines (VM) we provide here have OCaml pre-installed in an Ubuntu guest OS. Ubuntu is a free Linux
OS, and is an ancient African word meaning “humanity to others”. The process we use to create the VM is documented
here.

14.1 Starting the Installation on Windows

• Download and install VMware Workstation Pro. It is currently free for personal use, though you will have to create
an account with Broadcom.

• Download our AMD64-based VM. Save the “.ova” file wherever you like.
• Launch VMware Workstation, select File → Open, and select the “.ova” file you just downloaded into the window.
Click Open. Choose your own name for the VM (perhaps “CS 3110”) and click Import. Click “Power on this
virtual machine”. It can take about 2 minutes for all the jobs to launch and the GUI to appear.

• Skip down to “Finishing the Installation” below.

14.2 Starting the Installation on Mac

• Download and install VMware Fusion Pro. It is currently free for personal use, though you will have to create an
account with Broadcom.

• If you have an Apple Silicon (M1, M2, or M3) Mac, download our ARM-based VM. If you have an Intel Mac,
download our AMD64-based VM. Save the “.ova” file wherever you like.

• Launch VMware Fusion, select File → New, and drag the “.ova” file you just downloaded into the window. Click
Continue. Choose your own name for the VM (perhaps “CS 3110”) and click Save. When the import is done,
click Customize Settings → System Settings → OS → Linux → Ubuntu 64-bit ARM. Close the settings. Click the
play icon in the middle of the black window. It can take about 2 minutes for all the jobs to launch and the GUI to
appear.

• Continue with “Finishing the Installation” below.
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14.3 Finishing the Installation

The VM will log you in automatically. The username is camel and the password is camel. There are icons provided
for the Terminal, VS Code, and the Firefox web browser. They are in the left-hand launcher bar.

• Open Terminal and update Ubuntu and OPAM:

$ sudo apt update
$ sudo apt upgrade
$ sudo opam update
$ sudo opam upgrade

• If you are a student in CS 3110, create an OPAM switch for the current semester as described in the install instruc-
tions. Otherwise there is already a default OPAM switch you can use.

• Launch VS Code and update it to the most recent version. OCaml Platform is already installed for you.
Optionally, if you want to change your password, run passwd from the terminal and follow the prompts. And if you’d
rather have your own username, you are welcome to go to Settings → Users to create a new account. Just be aware that
OPAM and VS Code won’t be installed for that user. You’ll need to follow the install instructions to add them.
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